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We investigate acoustic deformation potential scattering in AlxGal.-As/GaAs

modulation doped heterojunctions. We review previous measurements of the deforma-

tion potential constant Z and discuss the controversy over the discrepancy between the

measured value of Z in bulk GaAs and in the heterojunction. By comparing the theory

of scattering in bulk GaAs with previously reported measurements of the mobility at

77 K we determine an upper limit for the deformation potential constant of 11 eV. •

We experimentally measure the relationship between the electron temperature and

the power loss, and we compare our measurements with theory. We conclude, in general

agreement with previous measurements in heterojunctions, that a large value of the

deformation potential constant (approximately 16 eV) would be necessary to fit the data

using a theory of acoustic phonon scattering. In contrast with previously reported stu-

dies of acoustic deformation potential scattering in heterojunctions, we do not conclude

that earlier measurements of Z in bulk GaAs are in error. Instead, we suggest a number

of possible enhancements to the theory which may explain the anomalously large power

loss -.vhch we observe. Our experiment, unlike previous studies of the mobility, indicates '

clearly thit if an additional scattering mechanism is the causc, then it must be an inilis-

tic mechanism. 0
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We also present a comprehensive theory of the electronic power luss in the hetero-

junction, including the effects of screening. It is found that screening changes the tem-

perature dependence of the power loss (or the mobility) and that this makes it possible to

conclusively observe the effects of screening at low temperatures. Analytical solutions of

the power loss equation are presented and the temperature range over which the analyti-

cal solution is valid is discussed. It is found that the analytical solutions are valid only 6

at temperatures much lower then previously believed.
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1. INTRODUCTION

Heterostructures and electron transport within them have been of interest for as

long as semiconductors have been studied. In 1951, shortly after the invention of the

transistor, Shockley patented a transistor design that used a heterojunction band discon-

tinuity at the emitter-base junction to improve the efficiency of the charge injection. 1

But the crystal growth technologies in use at the time were inadequate for the growth of

this device, or of any other heterostructure device. As a result, the development of

heterojunction devices was not actively pursued.

Over the past fifteen years the growth technologies have improved considerably.

Metal Organic Chemical Vapor Deposition (MOCVD)2 and Molecular Beam Epitaxy

(MBE)3 have matured into reliable techniques for the growth of high quality hetero-

structures. A number of companies manufacture standardized systems which can be

used to grow structures with abrupt interfaces, precisely controlled thicknesses and dop-

ing levels, and a minimal number of interface defects. This has led to a resurgence of

interest in heterojunctions. The development of MOCVD is particularly important, as it

allows commercial users to produce heterostructures in large volume and at reasonable

cost.

The design of heterostructure devices such as High Electron Mobility Transistors

(HEMTs)4 or real space transfer devices5 requires a detailed understanding of the

mechanisms that govern transport. Experimental measurements of the transport proper-

ties are therefore of primary importance. In this thesis we focus on measuring the effects

of acoustic deformation potential scattering, an important mechanism at low tempera- S

tures in modulation doped heterojunctions. Although the basic scattering mechanism is

_: I * *. .. .J% %;
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the same as in bulk material, experimental measurements of the strength of the scatter-

ing in bulk GaAs and in modulation doped Al.Ga_..,As/GaAs structures disagree consid-

erably, suggesting that acoustic phonon scattering in heterojunctions is not fully under-

stood.

Our study reveals something of the physical mechanism behind the discrepancies

between recent measurements of the acoustic deformation potential constant Z in modu-

lation doped AixGal-_xAs/GaAs heterostructures and the measurement of Z in bulk

Ga.As. Modulation doped heterostructures are used both to implement the HEMT and

to investigate such novel physical effects as the quantum Hall effect, 6 and are therefore of

considerable interest. The acoustic deformation potential constant determines the

strength of the interaction between the electrons and the acoustic phonons. Whereas in

previous studies the value of Z has been inferred from measurements of the mobility, we 2>S
determine Z by comparing ou.r measurements of the rate at which the conduction elec-

trons lose excess energy with theoretical calculations. Our measurem'-nts are more reli-

ably interpreted because the power loss is unaffected by the elastic scattering mechanisms

A which complicate the analysis of mobility measurements.

In the next chapter we review previous measurements of Z, both in bulk GaAs and S

in AlXGalxAs/GaAs heterojunctions, and we introduce the method of measuring Z from

the power loss of electrons. We then develop the theory of the power loss in a hetero-

junction. Excess energy is imparted by an electric field, which is assumed to change the

distribution function of the electrons from a Fermi-Dirac distribution at the lattice tem-

perature Ti to a Fermi-Dirac distribution with an elevated electron temperature Te. The

electron temperature rises until the net power loss, determined by the balance between
'5

'5
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the power lost to phonon emission and the power gained from phonon absorption, is

equal to the power input from the field. The integrals necessary to average all allowed

phonon interactions over all the electrons are calculated numerically to tabulate the aver-

age power loss rate as a function of T, and Te. We critically evaluate some previous

analytical solutions of the power loss equations, and discuss the temperature range over

which the approximations necessary to an analytical solution are valid.

The experimental measurement of these quantities is discussed in chapter _. The

lattice temperature is easily measured, and, in the steady state, the average power loss

per electron is the input power divided by the total number of conduction electrons. We

determine the electror temperature through its strong influence on the amplitudes of the

Shubnikov-de Haas oscillations.

Finally, the theoretical power loss is fit to the experimental measurements by

adjusting the deformation potential constant to minimize the deviation between theory

and experiment. We require a deformation potential constant of 15.8 eV to fit our data

using a theory which includes screening. This is somewhat larger than the values

inferre' by other methods, and we discuss a number of possible explanations. A com-

parison of the results from mobility measurements, which are sensitive to any scattering S

mechanism, with our power loss measurements, which are sensitive only to inelastic

scattering, provides an important clue to the possible causes of the differences between

the measurements in bulk GaAs and the measurements in heterostructures.

,-.
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2. ACOUSTIC PHONONS

2.1. Acoustic Phonon Scattering

An acoustic phonon traveling through a crystaldeforms the crystal, and this defor-

mation produces in III-V compounds two separate kinds of scattering potentials, the '.

piezoelectric potential and the deformation potential. In the simplest model, each of

these interactions is characterized by a single constant which relates the amount of defor-

mation to the magnitude of the potential produced. These constants are necessary for

the calculation of the acoustic phonon limited mobility, and it is important to experimen-

tally measure them. W'-.

The piezoelectric effect describes the potential produced by the deformation of an

ionic crystal which does not have a center of symmetry.7 The deformation changes the -.

orientation of the dipoles in each unit cell and thus produces a long range potential. For 4.'

crystals having the zincblende symmetry the piezoelectric tensor has only one nonzero

component.8 The piezoelectric constant can be determined from a number of simple

4 experiments which directly measure the deformation of a crystal and the resulting poten-

tial.g In GaAs, the generally accepted piezoelectric constant is believed to be accurate to

two decimal places. We account for piezoelectric scattering in our work, but we will not

discuss it in detail. Instead, we turn to the deformation potential constant, which cannot

be measured directly, and which is not agreed on to even the first digit.

When a crystal is compressed, the change in the density of the crystal causes a

change in the band gap energy which can be broken down into a shift in the conduction

band edge and a shift in the valence band edge. In this work we are concerned with the
4-Q
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scattering of electrons by the shift of the conduction band edge. For small changes in

density, the change in the conduction band energy is proportional to the compression.

The deformation potential constant Z is defined by

AE 0=Z (2.1)

9 { where AE, is the change in the conduction band energy, AV is the change in crystal

RK volume, and V0 is the equilibrium volume. 10 Longitudinal acoustic phonons, which pro-

duce periodic variations in the crystal density, can scatter electrons through the deforma-

tion potential. The scattering rate, calculated using Fermi's golden rule, is proportional

to Z2. Both the acoustic phonon limited mobility and the power loss are weighted aver-

ages of the scattering rate, and are therefore quite sensitive to the exact value of the

deformation potential.

Despite the almost forty years that have passed since Bardeen and Shockley pro-

posed the deformation potential formalism.10 the precise value of Z in GaAs is not well

known. The reported values cover an order of magnitude variation in the predicted

scattering rate. The uncertainty in Z can be attributed to two things: 1) most studies

have inferred a value for Z by fitting theoretical calculations of the mobility to experi-

mental measurements, a method which suffers because of the difficulty in separating the

effects of the various scattering mechanisms and 2) until recently, GaAs has been used

mostly at room temperature, where polar optic phonon scattering is much more impor-

tant, and so acoustic phonon scattering has not been studied in detail. The realization of

modulation doped heterostructures, 11 which significantly increase the advantages of low

temperature operation of devices, has resulted in an increased interest in acoustic phonon

scattering. In this work we will focus on acoustic deformation potential scattering in

"V
'r dr"



6

modulation doped AlxGal-.xAs/GaAs heterostructures. The wave function of the elec-

trons in these structures is confined mostly to the GaAs, and we expect the relevant

deformation potential constant to be that of GaAs. 2 We therefore start with a brief

review of previous measurements of Z in bulk GaAs. *

2.2. Previous Measurements of Z in Bulk GaAs

There have been a number of studies of the deformation potential constant in

GaAs, and the reported values of Z range from 6 eV to 16.8 eV. 13 "22 Obviously, some of

these measurements have been dominated by spurious effects. It is often difficult to

determine from the published reports which experiments are the most accurate, but there

is a simple way to determine an upper bound for the value of the deformation potential,

as suggested by Walukiewicz.

The major scattering mechanisms in bulk GaAs at 77 K are deformation potential

scattering, polar optic phonon scattering, piezoelectric scattering, and impurity scatter-

ing. The first three of these are the same for all samples of GaAs, while the last depends

on the doping level and the compensation ratio. We have calculated an upper limit to

the mobility in bulk GaAs at 77 K including only the first three scattering mechanisms

for various values of the deformation potential constant. The mobility was calculated

X : using the iterative procedure of Rode24 to solve the Boltzman equation for low applied

fields.25 A deformation potential of 16 eV (a commonly cited number) limited the mobil- S

ity to approximately 116000 cm2 V 1 s 1, considerably below the observed maximum of

approximately 210000 cm2 V s- 1. The observed maximum mobility is reached with a

deformation potential of 11 eV, but this is without the effects of impurity scattering,
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which can be significant. We can therefore be confident that the true deformation poten-

tial constant of GaAs is somewhat less than 11 eV. With this in mind, we consider the

measurements of Z in bulk GaAs.

In bulk GaAs, the deformation potential constant has most commonly been deter-

mined by adjusting Z to give the best fit between theoretical calculations of the mobility

and experimental measurements. The theoretical calculations must include the contribu-

tions from all scattering mechanisms, and any error in estimating the contributions of

the other mechanisms will increase the error in the value of the deformation potential

constant that is determined. The most accurate experiments are those that are designed

to minimize the relative contributions of the additional scattering mechanisms, and to

accurately estimate whatever contributions remain.

The most difficult scattering mechanism to account for is that of impurity scatter- .

ing. In the temperature range over which the total mobility is most sensitive to the ", N

value of the deformation potential constant (roughly 45 K to 85 K) both ionized impur-

ity and neutral impurity scattering are important. The donor concentration Nd and the

acceptor concentration N, must be known if these scattering mechanisms are to be

accounted for. It has been shown25 that Nd and N. can be calculated from the tempera-

ture dependence of the electron concentration if the sample is lightly doped (so that car-

rier freeze-out is observed) or from the temperature dependence of the mobility otherwise.

The measurement of Nd and Na is most accurate when the data covers a large range of

temperatures, typically 4 K to 400 K.

Lightly doped samples are most suitable for determinations of the deformation

potential because they have reduced impurity scattering, which makes deformation
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potential scattering relatively more important, and because Nd and Na can be more accu-

rately determined from carrier freeze-out than from the temperature dependence of the

mobility. However, it is difficult to grow high purity GaAs, and as a result there are a

number of studies of relatively impure samples. It is these studies of relatively low

mobility samples that have reported the largest values of the deformation potential con-

stant.A

The study by Wolfe et al. 13 reported measurements of high mobility samples, and is

therefore the least likely to overestimate the value of the deformation potential constant.

The total impurity concentration Nd + Na was less than 2X1014 cm- 3 for all of their

samples, and the mobility at 77 K was as high as 210000 cm 2 V- 1 s - 1. The impurity

concentrations were determined from the temperature dependence of the electron concen-

tration, and the deformation potential constant was adjusted to produce the best fit

between the theoretically predicted mobility and the measured mobility. Figure 2.1

reproduces their graph of the temperature dependence of the various scattering mechan-

isms along with experimental data from a high mobility sample and the best fit of the

total mobility. Note that deformation potential scattering is an important scattering

mechanism in bulk GaAs only over a limited temperature range. They found that a 10%

variation in the deformation potential constant produced a 5% variation in the total

mobility for temperatures between 45 K and 85 K. This sensitivity to the deformation

potential constant is found only in high purity samples with minimal impurity scatter-

ing.

A deformation potential of 7.0 eV was necessary to fit their data. This measure-

ment could be anomalously low if the true mobility were actually lower, or if the impur-
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Fig. 2.1. A graph of the experimentally measured mobility in a high mobility bulk
GaAs sample, the calculated contribution of each scattering mechanism to
the total mobility, and the best fit of the calculated mobility to the data.
The deformation potential constant necessary to produce the best fit was
7.0 eV. The impurity concentrations N. and Nd were determined from the
temperature dependence of the electron concentration. Note that deforma-
tion potential scattering makes a significant contribution over a limited range
from about 45 K to 85 K. Although deformation potential scattering can be-
come important at high temperatures, the conduction in the L and X valleys
complicates the interpretation of data and makes a determination of the de-
formation potential constant difficult. Reproduced from Reference 13.
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ity levels were overestimated. A number of studies have measured mobilities of around

200 000 cm 2 V- 1 s- ' at 77 K, and it is unlikely that this is a source of error. Although

an overestimate of the impurity scattering would result in an anomalously low value for

the deformation potential constant, the measured mobility still sets an upper limit of 11

eV, as discussed earlier.

Other values which have been reported in the literature include 6.0 eV, determined 4

from free carrier absorption, 17 6.3 eV, also determined from free carrier absorption,'5 7.0

eV, estimated from the pressure dependence of the band gap, 19 9.3 eV, determined from

the pressure derivative of transition metal defects, 20 11.5 eV, extrapolated from trends

observed in other compounds, primarily ZnSe,1 5 15.7 eV, determined from free carrier

absorption, 21 16.0 eV, determined from the mobility in doped samples at high tempera-

tures,14 and 16.5 eV, from an unspecified method.18 A number of these studies choose a

value for the deformation potential constant without presenting any data to substantiate

the result. The larger values have generally been reported in studies which used less reli-

able methods of measurement, as we would expect from our discussion of the upper limit.

2.3. Previous Measurements of Z in Heterostructures

The low temperature mobility of a modulation doped heterostructure is more sensi-

tive to he deformation potential constant than the mobility of a bulk sample. This is

because the reduction in impurity scattering which accompanies modulation doping

increases the relative importance of phonon scattering. Phonon scattering is particularly

important at the low temperatures where impurity scattering would dominate in bulk

samples.

V. J'r
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The wave function of an electron in a AlxGai...,As/GaAs modulation doped struc-

ture is confined almost entirely to the GaAs, and we expect the scattering to depend on

the deformation potential of the GaAs. However, a number of studies of acoustic defor-

mation potential scattering in AlxGal-.xAs/GaAs heterostructures have suggested a defor-

mation potential constant of 11 eV to 16 eV, 27-3 considerably larger than the accurate

values for bulk G&As.

Most of the studies of the deformation potential in heterostructures have been

based on the temperature dependence of the mobility, 27-32 and they suffer from the same

difficulty as the studies in bulk GaAs, namely the uncertainty in the contributions from

mechanisms other than deformation potential scattering. In heterostructures there are

scattering mechanisms not present in bulk material, such as interface roughness scatter-

ing, and they have not been quantitatively characterized. The calculation of impurity

scattering is more complicated than in bulk material because it must include both the

local background impurities in the bulk GaAs and the remote donors in the AlxGal-xAs.

The background impurity level is difficult to measure experimentally because it is small

compared to the electron concentration and there is no carrier freeze out. The remote

impurity scattering is difficult to predict theoretically because of its sensitivity to the

impurity potential and wave function of the electron. As a result, it is not possible to

8 theoretically predict the total mobility with enough accuracy to deduce a deformation

potential. Efforts have been made to circumvent this problem by analyzing the tempera-

ture dependence of the mobility.

Although the absolute mobility cannot be computed accurately, Price has proposed

that the temperature dependence can.34 He has suggested that at temperatures below
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40 K the impurity scattering rate is independent of temperature and that the sole source

of the temperature dependence of the mobility is acoustic phonon scattering. If correct,

this eliminates the need to understand the details of impurity scattering. The theory of

acoustic phonon scattering then predicts that the slope of the temperature dependence of

the mobility will depend directly on the deformation potential. Of course, if other tem-

perature dependent scattering mechanisms contribute to mobility then the deformation

potential constant determined from these experiments will be inaccurate.

Lin et al. h- ie reported a comprehensive study of the temperature dependence of

the mobility in modulation doped AlxGaixAs/GaAs heterostructures. 3° They measured

the temperature dependence of the resistance in a set of modulation doped single hetero-

structures that exhibited a wide range of mobilities. The electron concentration in their

samples was independent of temperature, and so the temperature dependence of the resis-

tance was the same as the temperature dependence of the inverse mobility. Figure 2.2 is

reproduced from their paper, and shows the temperature dependence of the resistance

normalized to the extrapolated zero temperature resistance. The low mobility samples

(which had a large impurity scattering rate) exhibited a negative temperature coefficient

of the inverse mobility. This is easily explained as being due to the temperature depen-

~v. dence of the impurity scattering. Samples with high mobilities (and corresponding low

impurity scattering rates) have a temperature coefficient with the opposite sign. They IxX-%"

inkerpret this as indicating that the temperature dependence of the impurity scattering is

insignificant in the high mobility samples. Based on this interpretation, they deduce a

deformation potential constant of 13.5 eV from the temperature dependence of the

mobility in their high mobility samples. This is in agreement with the value that Men-

qv
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Fig. 2.2. The variation of resistance (proportional to inverse mobility) in a set of sam-
pies with different low temperature mobilities. The samples with low mobili- C
ties (as low as 20000 cm2 V - 1 s- 1) are at the bottom of the graph, and show
a negative temperature coefficient of resistance typical of impurity scattering.
The highest mobility samples (up to 200000 cm2 V - 1 s - 1) show a positive
temperature coefficient of resistance, which Lin et al. interpret as being due
solely to deformation potential scattering. Intermediate mobility samples
show intermediate temperature coefficients. Reproduced from Reference 30.
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dez et al. found in a less comprehensive study of a single high mobility sample. 27 Other

studies based on the temperature dependence of the mobility have also reported values

ranging from 11 eV to 14 eV. 31' 32

2.4. Power Loss Through Deformation Potential Scattering

The discrepancy between the measured value of Z in the AlxGai-xAs/GaAs hetero-

structure and the value in bulk GaAs suggests that there may be additional scattering

mechanisms which affect the temperature dependence of the mobility in the hetero-

structure. This is of particular concern since Lin et al. found in their study samples for

which other scattering mechanisms were of demonstrable importance. This possibility is

inherent in any measurement which depends on the mobility, because the mobility is

determined by the combination of all scattering processes. In our study of the deforma-

tion potential constant we measure the power loss of the conduction electrons and vary Z

to fit the theoretical power loss to our experiment. The power loss is of course indepen-

dent of elastic scattering mechanisms such as impurity scattering or interface roughness

scattering. Thus, the measurement of Z from the power loss requires fewer assumptions

about the types of scattering mechanisms present and is potentially more reliable. This

method was originally developed to investigate scattering mechanisms in silicon inversion

la y e rs 35 _ .$ :

In the next chapter we explore the problems inherent in a calculation of the power

loss (most of which are common to the calculation of the mobility) and outline our calcu-

lation, which must be done by numerical integration on a computer.
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3. THEORY OF THE POWER LOSS

3.1. Introduction to the Method

Our determination of the deformation potential constant involves two parts: the

theoretical calculation of the power loss, and the experimental measurement of the power

loss in terms of the variables used in the theoretical calculation. In this chapter we dis-

cuss the theoretical calculations, first describing the general approach and the indepen-

dent variables on which the power loss depends, and then deriving the equation for the

power loss. The variables of the power loss equation are the quantities which we meas-

ure experimentally. In the last part of this chapter we discuss and compare both analyti-

cal and numerical solutions for the power loss equation.

We calculate the transport properties using a semiclassical approach. The

Schr6dinger equation for the electron-lattice system is first simplified by making the adi-

abatic approximation, which separates the equations of motion for the electrons and the
S

atoms. Phonons are then treated as perturbations which cause the electrons to make

transitions between states. The effective mass theorem simplifies the equation of motion

further and allows us to calculate the wave functions of the electrons. This calculation is

complicated considerably by the confinement of the electrons at the heterointerface, an

important problem which we will return to later. With these approximations we then

use a method based on the Boltzman transport equation to determine the electron distri-

bution function necessary to balance the power lost to phonon emission with the power

gained from the electric field.

The Boltzman equation approach requires a calculation of the effect of collisions on

the distribution function of the electrons. We use Fermi's golden rule to calculate the



rate at which the perturbing potential of the acoustic phonons causes transitions of elec-

trons between states. We must verify that Fermi's golden rule is applicable to the condi-

tions of our experiment. Peierls has pointed out that in a degenerate system the scatter-

ing time r and the Fermi energy E must satisfy the inequality Tef > li if the electrons are

to be in well-defined states, which is, of course, an important assumption of our

approach. 36 The Fermi energy of our samples is of the order of 15 meV, and we infer 6

from the mobility a r of approximately 1Xl0 - 12 s, which easily satisfies this inequality.

Note also that the mean free path of an electron is longer than its de Broglie wavelength,

which is necessary if we are to assign a wavelength to the electron. S

3.2. The Independent Variables

Given the validity of the semiclassical approach we can easily calculate the phonon •

induced rate of transitions between electron states. The power loss is then calculated by

averaging the transition rates, weighted by the energy gained or lost, over the occupied

electron states. Our calculation of the matrix elements for transitions depends on the -

available phonon modes, their occupation numbers, and the wave function of the elec-

tron. The average of the transition rates over the occupied electron states depends on

the distribution function for the electrons. The independent variables in our calculation

of the power loss depend on our assumptions regarding these parameters.

In our work we adopt the assumption that the phonon modes are those of bulk

GaAs. That is, we ignore perturbations of the phonon modes caused by the difference in ?

the elastic constants of the GaAs and the Al.Gal_,As, and we ignore perturbations of the

modes caused by the close proximity of the crystal surface. This may be an

oversimplification. It seems probable that long wavelength phonons will be affected by
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the proximity of the surface of the crystal. Mendez et al.27 justify the assumption of

bulk phc-ion modes by citing magnetophonon experiments which indicate that the energy

of the polar optical phonon modes is relatively unchanged, but this'energy is probably

insensitive to the mode of the phonon, and therefore a poor indicator of any disturbance

in the modes. Interface phonons have been clearly observed in AlxGal.xAs/GaAs super-

lattices,3 7 but we know of no conclusive work on single hete.ojunctions. Studies of the S

mobility in single heterojunction silicon Metal Oxide Semiconductor Field Effect Transis-

tors (MOSFET) inversion layers have shown that interface modes can be important in

that system,3 ' ° but this result is not directly comparable to the AlxGal-.xAs/GaAs sys-

tem because the elastic constants of AlGal.As and GaAs do not differ as much as do

those of Si and Si0 2. We continue with the assumption of bulk 3D phonon modes

because there exists no definitive theory of interface modes.

The occupation numbers of the phonon modes are assumed to be given by the

Planck distribution function, characterized by the lattice temperature T1. Of course, 0

power loss from the electrons is accomplished by emitting phonons, which will change the

occupation numbers of the phonon modes. The excess heat of the err-ted phonons is

absorbed by the surrounding system, which in our experiment is a 'quid helium bath.

At the low levels of excitation in our experiment the rate at which energy is transferred

to the helium bath is much greater than the rate at which the electrons transfer energy

to the lattice, and it is not necessary to consider hot phonon effects.

The energy of the phonon modes is determined from the linear dispersion relation,

£wQ = (iuQ3 , where WQ is the phonon frequency, Q3 is the three-dimensional phonon

wave vector, u is the speed of sound, and (i is Planck's constant. This dispersion relation 4

%. A I-~-% . -~%*~*'.
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should be quite accurate for the long wavelength phonons which are excited at the low

temperatures of our experiment.

It is more difficult to determine the correct electron distribution function to use in

our calculations. The applied electric field disturbs the distribution function from its

equilibrium values, and an exact calculation of it would require a solution of the Boltz-

man transport equation that included all the scattering mechanisms, which is difficult

and unnecessarily complicated for our purposes. However, under the limited conditions

of our experiment the distribution function can be accurately approximated.

The electron-electron interaction exchanges energy and momentum between elec-

trons without changing their total energy, and it will tend to drive the electrons into
-p

equilibrium with themselves. Other mechanisms, such as acceleration by an electric field

or emission of phonons, add or remove energy from the electrons and drive the distribu-

tion away from equilibrium. If the electron-electron scattering rate is much larger th". '

the phonon emission rate, then the electrons will very nearly be in equilibrium with

themselves, and they will be characterized by a Fermi-Dirac distribution function f(E)

with an elevated electron temperature Te and a Fermi energy Et. 4 1 An electric field will

cause T, to increase until the power lost to phonon emission balances the power input

from the electric field.

A number of studies have investigated the conditions necessary for the hot electron

model to be valid. The important requirement is that the electron-electron scattering

rate exceeds the net phonon 'emission rate. Electron-electron scattering increases with %

increasing electron density, and phonon emission increases with increasing electron tem-

perature. For given electron and lattice temperatures, there is a minimum density of



electrons for which the hot electron model will be valid. A review by Ferry 42 suggests

that a bulk electron concentration of 1016 cm- 3 would be adequate for the conditions of

our experiment. A bulk density of 1016 cm- 3 corresponds to a two-dimensional electron '

gas density of approximately 5X1010 cm- 2. The density of electrons in our experiment is

an order of magnitude larger than this, and we expect the electron temperature model to

be valid. Preliminary studies of the distribution function through Monte Carlo simula- •

tions of a two-dimensional electron gas in an AlxGaj-xAs/GaAs heterostructure confirm

this estimation.
43

Finally, the matrix element for phonon interactions depends on the wave function

of the electron. In a heterojunction, the calculation of the wave function of the electrons

is complicated by potentials which confine the electron near the heterointerface. These

potentials cannot be treated as perturbations because they do more than cause transi-

tions between existing states - they change free states to bound states. This change is at

the heart of many of the interesting phenomena observed in heterojunctions. It is also

the cause of many of the difficulties in calculations of the properties of the heterojunc-

tion.

The important potentials are those of the band gap discontinuity at the heterojunc-

tion, the electrostatic potential as determined from Poisson's equation (where the charge

is that of the ionized donors and acceptors plus that of the free carriers), and refinements

such as the exchange-correlation potential and the image force potential. These

refinements are sometimes ignored in order Lo get simple analytic solutions for the wave

functions. The wave functions are determined by solving the time-independent

Schrodinger equation

-- h -

• '.' .',:,. . 'a ,,, g ",... a-4-, ' ,," . . ..... ... "'"
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_2 + V(z) = Eb, (3.1)

where V(z) is the potential and the remaining symbols have their usual meanings. We

assume that the crystal structure and doping is a function of the z coordinate only. Note

that an exact solution of this equation requires that the potential due to the electrons be

included self-consistently in V(z).

This equation may be separated into the part dependent on the coordinates parallel

to the heterojunction (x and y) and the part dependent on the coordinate perpendicular

(z.) The envelope wave function of the electron is then given by

= eikrPb 0(z), (3.2)

where k is the wave vector of the electron in the xy plane, r is a two-dimensional vector

in the xy plane, and On(z) is a solution of

r42 a2 1 (Z21 + V(z)0=E2 (3.3)

The calculation of the scattering rate (and hence the transport properties) now

requires an evaluation of the matrix element

Mnmn oc (e' tr4n(z) I eiQ* e I Ie KFmz)), (3.4)

where ki is the initial wave vector of the electron and 0m the initial perpendicular wave

function. Similarly, kr is the final wave vector and On the final perpendicular wave func-

tion. The phonon wave vector has been divided into its component parallel to the inter-

face, Q, and its component perpendicular to the interface, q.

The parallel components of crystal momentum are conserved, just as they are when

three-dimensional electrons scatter. However, the perpendicular components are not. 0

Instead, the transition rate is proportional to

.. . .

%, %~
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Tm=fO(z)ezO.(z)dz, (3.5)

where 1Dm is called the overlap integral or the form factor. Transitions may be between

states within the same subband (n = m) or they may be between subbands (n 0 m.) If

the higher subbands have insignificant populations then it is sufficient to consider

intrasubband transitions within 4O(z). At the electron concentration and the tempera-

tures of our experiment this is the case, and the only overlap integral we will be con-

cerned with is I00(q), which we v ill henceforth refer to as I(q). The failure of the conser-

vation of crystal momentum in the perpendicular direction is the result of the term V(z)

in the Hamiltonian. This term breaks the translational symmetry from which the con-

servation of crystal momentum followed.14

The replacement of momentum conservation with the overlap integral makes accu-

rate calculations of the transport properties difficult. A small change in O(z) can result in 4

large changes in I(q) and hence in the scattering rate. We now consider various methods

of solving for 4On(z).

The conduction and valence band discontinuities which occur at a heterojunction

are an important contribution to the potential V(z). These discontinuities are necessary V N

to accommodate the difference in the band gap energies of the materials. Because of the 0

commercial applications of the AlxGajx.As/GaAs system there is considerable data avail-

able on it, and the band alignment has been well characterized. It is now known that ..

approximately 65% of the band gap difference appears in the conduction band discon-

tinuity and the remainder in the valence band discontinuity. 5 (The previously accepted

value 48 of 85% is now generally considered to be in error. The error is attributed to

spurious effects such as band bending, which can change the effective barrier height

l&
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measured in some experiments, 47 and to the insensitivity of the original measurements to

the band cdgz discontinuiy.48 '4,) The 65% rule results in a conduction band step of

M C  0.79x (eV) at the heterojunction. For the samples used in this study the discon-

tinuity was approximately 240 meV.

The potential V(z) is complicated by the band bending due to the electrostatic

potential of the donors, acceptors, and free carriers. Donors in the AlxGajxAs supply -

free electrons which transfer to the GaAs where the conduction band minimum has a

lower energy than that of the AlxGal-..As. This charge separation causes band bending,

which tends to confine the electrons to the interface. An example of the resulting band

structure is shown in Fig. 3.1.

If there is strong band bending, then there are a number of approximations for V(z)

which allow for simple analytic solutions for the 0,,(z) with low energies. If the

Al Gaj_.As is strongly N type, and the GaAs is P type, then there will be a large density

of transferred electrons in the GaAs and a long depletion width. The low energy elec- •

trons will be localized near the interface where the band bending is approximately linear,

as shown in Fig. 3.1. It is then convenient to approximate V(z) by an infinite barrier at

the heterojunction and a linearly increasing barrier in the GaAs. 50 This is the triangular ,.

well approximation.

Although 0,(z) can be calculated exactly within the limits of the triangular poten- te:

tial approximation,?' the solutions (Airy functions) are cumbersome, and not in keeping 'N -

with our search for easily manipulated analytic solutions. It is generally more convenient

to use a variational wave function. The most commonly used variational wave func-

tion,? called the Fang-Howard wave function, is ,S

MA'V r
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Fig. 3.1 The variation of the conduction band edge energy with distance in a modula-
tion doped A1xGal_,As/GaAs heterojunction. Also shown are the energy lev-
els of the first two subbands and the Fermi energy. The band bending was -e
calculated self-consistently for a temperature of 4.2 K, an electron concentra-
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O (b) 2 .z (3.6)

The variational parameter is b, and z is measured from the interface as shown in Fig.

3.1. The variational parameter is determined by minimizing the energy. If we include

contributions from the kinetic energy of the electrons and the interaction energy of the

electrons with the depletion charges and the other electrons, then b is given by

48rm*e2 (LNs+NdeP1 (3.7) 6

b 32 

3.71

where N, is the two-dimensional density of electrons, Ndepl is the product of the acceptor

density in the GaAs and the depletion width, cr is the relative low frequency dielectric

constant, and co is the permittivity of free space. Although this wave function is quite

convenient because of its simplicity, it is of limited accuracy in GaAs.

The triangular well approximation and the variational wave function were originally

developed to describe the electrons in inversion layers of silicon MOSFETs. These

approximations are considerably less accurate in AlxGal-.xAs/GaAs heterojunctions. The

approximation of an infinite barrier at the heterojunction is less accurate in .

AlxGa_xAs/GaAs heterojunctions, where the discontinuity is of the order of 0.3 eV, than

% it is in a Si/SiO2 heterojunctions, where the discontinuity is about 3.0 eV. In addition,

the lower effective mass of electrons in GaAs results in a wave function with a larger spa-

tial extent, which reduces the accuracy of the linear approximation for the band bending

%I potential.

The most accurate model of electrons at AlXGal-_xAs/GaAs heterojunctions is one

which numerically calculates self-consistent values for V(z) and On(z). This allows us to
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replace the infinite barrier used for the variational wave function with an accurate bar-

rier height, and it allows the inclusion of second-order effects such as the

exchange-correlation potential, which cannot be included in analytic models. The

self-consistent wave function is calculated iteratively, assuming a potential, calculating

the wave function, using the wave function to calculate the new potential, and then

repeating until the calculation converges. 51 Although the self-consistent wave function

requires numerical calculation of the transport properties, it is significantly more accurate

than the variational wave function, and it is necessary for an accurate analysis of experi-

mental data.

In Fig. 3.2 we compare the wave function for a single AlxGalxAs/GaAs heterojunc-

tion as calculated using both the Fang-Howard variational model and the self-consistent

numerical model. The self-consistent calculation shows that the true wave function has

-a significant extent into the AlxGai.xAs, which the variational wave function cannot

reproduce. This extension into the AlxGal-_xAs has a significant effect on the potential

and the wave function because of the interaction of the electrons with the positively

charged donors in the AlxGalxAs, and this changes the overlap integral.

In Fig. 3.3 we compare the overlap integral as calculated from both the variational

and the self-consistent wave functions. There are significant differences at the phonon

wave vectors which are important to our calculation of the power loss. The use of the

variational wave function would therefore introduce a large error into our calculations.

F". '
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Fig. 3.2 A comparison of the self-consistent and the variational wave functions. The
self-consistent wave function was calculated for a barrier height of 240 meV,
while the variational wave function assumes an infinite barrier. The majority
of the difference between the two wave functions is caused by the interaction
of the self-consistent wave function with the positively charged donors in the
AlGal_..As. The variational parameter was calculated from Eq. (3.7) using a
depletion width of 1.3 jam. The doping levels and sheet carrier concentra-
tions are the same as those used for Fig. 3.1.
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Fig. 3.3 A comparison of the overk.,p integral calculated from the self-conisistent wave
function with the overlap integral from the variational wave function. Corn-

& puted using the wave functions shown in Fig. 3.2. The equivalent tempera-
ture is defined by kT = iulq.
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3.3. Screening of the Electron-Phonon Interaction

In bulk GaAs the screening of the acoustic phonon interaction has generally been

ignored. At the high electron densities where screening of the acoustic phonon interac-

tion would be important the mobility is dominated by impurity scattering, while at low

electron densities the screening is not significant. Modulation doped heterostructures

combine minimal impurity scattering with the high electron densities necessary for

effective screening, and the possible effects of this screening must be investigated. How-

ever, different researchers have reached different conclusions on the importance of screen-

ing. Walukiewicz has found good agreement with experimental data using a theory

which does not include screening, " 52 while Price finds that screening must be included.2

We consider both the theory without screening and the theory with screening, and wea 0
discuss a simple experimental method to determine which one is applicable.

The matrix element for the screened interaction is given by the matrix element for

the unscreened interactions multiplied by a screening factor. Following Price,53 we use a

screening factor calculated using the Lindhard theory of the dielectric function and con-

sidering only static potentials. The Lindhard theory is appropriate for small potentials

which produce a linear response, and is essentially valid for the potentials of acoustic

phonons. The static screening factor is accurate for potentials which vary slowly in time,

and is appropriate for the low frequency phonons excited at the temperatures of our

experiment. At high temperatures it may be necessary to use a more sophisticated %

theory of screening. With these approximations the screening factor is given by 3 -

S(Q)= Q (3.8) 0Q + PH(Q)'

where H(Q) is

%

A~
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H(Q) = ff¢(zI)l(z 2)exp(-Q IZI-Z2 I)dzidz 2, (3.9)

and P is a constant characteristic of the material,

2me 2  (3.10)

For the effective mass and dielectric constant of GaAs, P - 2X10 6 cm - 1 .

These equations describe the effects of the polarization of a two-dimensional elec-
S

tron gas within a subband. They do not include the screening effects related to intersub-

band transitions, which are not expected to be important under the conditions of our

experiment.5

Our experimental data is analyized using a screening factor computed without

further approximation from Eqs. (3.8) and (3.9), including the self-consistent electron

wave functions, but in some applications a simplified expression for an approximate

screening factor is useful and accurate. For small Q, H(Q) approaches unity, and if

Q << P then the screening factor approaches

S(Q) = 9/P. (3.11)

This is the strong screening approximation. We use the approximation later in our ana-

lytic solution of the power loss equation, and we discuss its accuracy in more detail then.

Screening of the scattering potential changes the Q dependence of the matrix ele-

ment, and this changes the temperature dependence of the power loss. Hence it is in

principle possible to determine experimentally the importance of screening by measuring

the temperature dependence of the power loss. We will discuss this further in the section

on analytic solutions of the power loss.
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3.4. The Power Loss Equation

Our goal is to calculate the power loss as a function of the parameters discussed in

the previous section: the lattice temperature TI, the electron temperature Te, the Fermi

energy ef, and, indirectly, the wave function of the electron. The power loss is normally

calculated from the third moment of the Boltzman transport equation. This approach is

outlined in standard texts on semiconductors,5 4 and it is easily modified to include our

assumption that the effect of the electric field on the distribution function is to increase

the characteristic temperature of the Fermi-Dirac distribution function. Here we will fol-

low instead a slightly different approach described by Conwell. It is entirely equivalent ".

to taking the moment of the Boltzman equation, but it perhaps makes clearer the physi-

cal meaning of the various terms, and it is more easily extended to include the effects of

disturbed phonon modes or hot phonon effects.

We start by calculating the time rate of change of the phonon distribution function

NQ as caused by phonon emission and absorption. This is just the difference between the

transition rate for phonon emission and absorption from a particular electron state

summed over all filled electron states and is given by
S

NQ = 2 11 S2(Q)I 2(q)M 2(Q) b(Ck+hWQ--'k+Q)

at k

X {(NQ+l)f(Ek+Q)(1-f(fk)i - NQf(Ek)[1-f(fk+Q)]}.

The initial factor of 2 is for the spin degeneracy , the electrons, the summation is over

the two-dimensional electron wave vector, (k and Ek+Q are energies defined by , ." ,
2m-

6(x) is a Dirac delta function, and f(E) is a Fermi-Dirac function characterized by a

Fermi energy er and an elevated electron temperature Te. The unscreened theory is

*%J %-

U ~ Pd~% ..
.
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obtained by setting S = 1. Here Q3 is the three-dimensional phonon wave vector, Q is

the component of Q3 parallel to the heterointerface and q is the component perpendicu-

lar. Although it is not entirely consistent with our definitions of Q3, Q, and q, we have

maintained tradition in using NQ for the function describing the occupation numbers of

the three-dimensional phonons and wQ for the frequency of the three-dimensional pho-

non. On the right-hand side of the above equation we take Nq to be given by the

Planck distribution function. If we were to include hot phonon effects we would combine

our calculation of 9NQ/,9t with an equation for the decay of the hot phonons in order to
0

determine more exactly the correct form for NQ on the right-hand side. As stated ear-

lier, we neglect hot phonon effects because they are of minimal importance under the con-

ditions of our experiment.

The matrix elements M(Q) are given by

M2(Q3) = Z2fQ3 (3.13)
2pul

X-A for deformation potential scattering,

M2(Q,)  (eh 14)2 9q2Q4  (3.14)
2pul 2Q3

for longitudinal piezoelectric scattering, and

=(eh 14)2 8q 4Q2 + Q6 (3.15)2put 2Q7

for transverse piezoelectric scattering." The longitudinal and transverse sound velocities

are given by ul and ut, respectively, p is the density of the crystal lattice, and eh14 is the

piezoelectric constant. The remaining symbols have their usual meanings.

Ai9
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Using the net rate of phonon emission we calculate the average power loss per elec-

tron as

at n Q,q a-t' (3.16)

where n is the electron concentration and the summation is over all phonon modes.

N. After considerable manipulation, outlined in App. 1.1, we can reduce Eqs. (3.12) and

(3.16) to

dt 2u/r 2 fdQ exp(fiwQ/kT,)exp(-fiwQ/kT,) - 1 NQ

ir/2
x f dO S2(Q) J2(q) M 2(Q3 ) (3.17)

0

00 f ((TiWQ - EQ) 2 11/2
Xfdek Ek - EEQf(Ek)[1 - (k + £Q1ifd 4kE

-- here 0 is defined such that q = Q3sinO and Q = Q3cosO, u is either the longitudinal or

transverse sound velocity, depending on which matrix element is used, and enin is the

qminimum electron energy allowed by conservation of energy and the parallel component

of the wave vectors, defined as ON.

(min ( -EQ (3.18) M %
C.. 4EQ

Generally it will be necessary to solve Eq. (3.17) numerically, and this is what we do

for the comparison with our experiment. Each of the three integrals is computed tusing

Simpson's rule for numerical integration. The integration to infinity over the phonon NOP

wave vector is terminated once the integrand becomes insignificant. For large phonon

wave vectors the integrand decreases exponentially because of the form of NQ, so this is a

good approximation. Similarly, the integrand decreases exponentially for electron ener-
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gies far from the Fermi energy, and the integration over electron energy is also ter-

minated for very large or small energies. The integral over electron energy contains an

integrable singularity at the lower limit (it goes as fx- dx). The numerical calculation

in this region requires some care if the results are to be accurate. We use a dynamically

chosen variable spacing between integration points to give good resolution in the region

where the integrand varies rapidly while retaining large spacing and high speed in the 6

regions where it varies only slowly. The program is designed to have a precision of at

least 1%, which is better than the experimental data to which we compare it.

3.5. The Analytical Solution of the Power Loss Equation

For the purpose of our experiment it was necessary to calculate the power loss

numerically to achieve the desired accuracy. However, with some approximations, it is

possible to solve Eq. (3.17) analytically, and this solution provides interesting insights

into the scattering mechanism. A form of the analytical solution was originally I N-r

developed by Hess to explain the power loss in silicon MOSFET inversion layers.5 7 An

analytical solution which eliminates some of the approximations that are not appropriate

to the AlGal-,xAs/GaAs system has been outlined by Price.58

We are concerned mostly with the power loss at low temperatures, and we discuss

the approximations appropriate to low temperatures. There are three major approxima-

tions. The overlap integral I(q) must be replaced by unity. This is accurate for small

phonon wave vectors. The strong screening approximation, S(Q) = Q/P, must be used

in place of the full screening function. This is accurate for large electron concentrations

and small phonon wave vectors. Finally, we must approximate the phonon occupation

N.yAL
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numbers by NQ = exp(-fiwQ/kTi), which is accurate at low temperatures. We will dis-

cuss further the accuracy of these approximations shortly.

With these approximations and some other minor ones we can reduce Eq. (3.17) to

L> F(T) - F(TI), (3.19).'

at
where

F(T) -- !T2Z2 )7, (3.20)
,2(27r) 2(2m , )

3/ 2e4pfi 2u I I

if we substitute the matrix element for screened deformation potential scattering.

(Although our approach is slightly different from that of Ref. 58, the approximations

involved are identical. Note that Eqs. (33), (34), and the constant C of Ref. 58 are

apparently a factor of 2 too large.) The matrix element for screened piezoelectric scatter-

ing leads to F(T) oc T 5 . Further details of this derivation may be found in App. 1.2.

The term F(Te) is the energy lost to phonon emission, and the term F(TI) is the

energy gained through phonon absorption. Note that if TZ >> T1 , then the power

gained from phonon absorption is insignificant. Thus, within the limits of the approxi-

mations, the net power loss is determined almost completely by phonon emission at elec-

tron temperatures only slightly greater than the lattice temperature.

Each factor of Q in Eq. (3.17) gives a factor of T in Eq. (3.20). The parallel and

perpendicular components of Q, Q = QacosO and q = QasinO each contributes a factor of

T just as Q3 would, although they generate a different numerical prefactor. The effect of

factors of Q on the temperature dependence of the power loss can be exploited to deter-

mine experimentally the importance of screening. In the strong screening approximation ,

the screening introduces a factor of Q2 in Eq. (3.17) and a factor of T2 in Eq. (3.20). For
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deformation potential scattering, with a matrix element M(Q) oc Q, the power loss is

then proportional to T 7 - T7 if screening is important, and to T 6 - T1
5 if it is not. The

matrix element for piezoelectric scattering is proportional to 1/Q, and the power loss to

either T - TI5 or T3 - T3, depending on the screening. Within the temperature range

where the approximations are accurate the effects of screening will be clearly reflected in

the temperature dependence of the power loss. The equations for the mobility are essen-

tially the same as those for the power loss, and the mobility will show the same tempera-

ture dependencies.

Because of the difference of T 2 in the power loss of deformation potential and

piezoelectric scattering they each dominate within a different temperature range. Defor-

mation potential scattering is important at high temperatures, and piezoelectric at low

temperatures, with a crossover somewhere between 1 K and 2.5 K, depending on the

value of the deformation potential constant.

These simple temperature dependences are obtained only when the approximations

necessary for the analytic solution are accurate. The accuracy of these approximations -

depends on both the electron concentration and the wave number. To illustrate the 4-

approximations, we have computed the overlap integral and the screening function using S

the Fang-Howard variational wave function discussed earlier. The variational parameter

b was calculated for a depletion density of 0. This approximate wave function is accu-

rate enough for the purpose of illustrating the approximations. Figure 3.4 shows the--

overlap integral, computed for three different electron densities, and Fig. 3.5 shows the

ratio of the exact screening function to the strong-screening approximation, also for three ,.

N S
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Equivalent Temperature (K)

0.0 1.6 3.2 4.8 6.4 8.0

0.8

0N = 1.O x lO 2/cm 2
-- N = 5.0 x 1011/cm2 '.

0.2 N = 1.0 x 10 1/cm 2  " .

0.0 I I
0 4 8 12 -16 20

q (cm-f )  xl10

Fig. 3.4 The overlap integral as a function of q and as a function of equivalent tem-

perature, defined by kT = fiu 1q. An equivalent temperature calculated using
the transverse sound velocity would be 40% smaller. Phonons with an
equivalent temperature up to an order of magnitude larger than the electron %
temperature contribute significantly to scattering, as discussed in the text.
These curves were calculated using variational wave functions for purposes of •
illustration.
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Equivalent Temperature (K)
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F ig. 3.5 The ratio of the exact screening function to the strong-screening approxima-
tion as a function of Q and as a function of equivalent temperature. Calcu-
lated using variational wave functions.
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electron densities. It can be seen that the approximations are generally more accurate for

large electron densities and small phonon wave numbers.

If the analytic calculation is to be accurate, then these approximations must be

accurate for those phonons which dominate the average scattering rate. It has been sug-

gested58 that the analytical calculations become valid at temperatures for which

fiuk1 < kT. The corresponding transition temperature for an electron concentration of

5X101 cm- 2 was calculated as 6.0 K. This was apparently based on the assumption that

the phonon modes to consider when determining the validity of the analytical calcula-

tions are those with energies close to kT. Using this criterion, it can be seen from Figs.

3.4 and 3.5 that the approximations for the screening factor and the overlap integral

differ from the exact solution by only about 10% at a temperature of 3 K and an electron

density of 5X101 cm- 2, which would be quite good. However, the assumption that the

dominant phonon modes are those with significant occupation numbers is not correct,

and the approximations are considerably more inaccurate.

To solve Eq. (3.17) analytically, we must solve

F(T) o Wn+1J(--) exp(---(--)d(-----),

F(T X kkT (3.21)

where n is 6 for deformation potential scattering and 4 for piezoelectric scattering. This .,, ..

.1n- %N

integrand has a maximum at tiWQ= nkT, and is negligible for phonons with energies of

only a few kT. When equipartition fails, scattering is dominated by phonon modes with

energies much greater than kT. This is, of course, what we mean when we say that

equipartition has failed badly, and it is a necessary condition for our approximation of

the phonon occupation numbers by NQ = exp(-iwq/kT). However, the implications of

* i~ . * ---- ~ %
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this for the analytic solutions of the transport equations have not been generally recog-

nized. The analytic solution is accurate only at temperatures for which the approxima-

tions are valid for these high energy phonons. Based on this analysis of which phonon

modes are dominant, the approximations for the overlap integral and the screening func-

tion at 3.0 K and an electron density of 5X10n/cm 2 are an order of magnitude too large,

a considerable difference from the 10% error suggested earlier. From Figs. 3.4 and 3.5 it S

can be seen that the approximations will be applicable only at extremely low tempera-

tures and high electron concentrations69

The failure of the analytic approximations destroys the effect of the Q dependence

of the matrix element on the temperature dependence of the power loss. Thus, although

the screened matrix element leads to a lower power loss than the unscreened matrix ele-

ment, the temperature dependence of the power loss is not markedly changed by screen-

ing. It is therefore possible to directly test the importance of screening only at the

extremely low temperatures for which the analytical approximations are valid.

The conclusion that high energy phonons are dominant was based on the solutions

of the power loss equation with the approximations, but it is not materially changed

without the approximations. Figure 3.6 shows the numerical calculation (without the

approximations) of the power loss to deformation potential scattering at 1.0 K as a func- -

tion of the phonon energy. The dominant phonons are those with energies of approxi- .,,.

mately 6kT. There is a secondary peak at an energy which corresponds to phonons with

wave vectors Q 2kr, where kr is the Fermi wave vector, and an abrupt decrease for

larger wave vectors. Scattering is dominated by electrons near the Fermi energy, and the

abrupt decrease in scattering occurs when the phonon wave vector exceeds the maximum

- 'V N
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~C. E 2.0

0

0
S 1.0

0.0

0.0 5.0 10.0 15.0
Reduced Phonon Energy (hiwQ/lT)

Fig. 3.6 The net power loss as a function of phonon energy for deformation potential
scattering. Note that phonons with energies of only a few kT do not contri-
bute substantially to the power loss. The secondary peak in this plot occurs
at a phonon energy for which Q 2kr, corresponding to backward scattering
of electrons at the Fermi energy. Calculated using a variational wave func-
tion for an electron concentration of 5X10" cm 2 , a lattice temperature of
1.0 K, and an electron temperature of 1.05 K. Normalized for a deformation b
potential constant of 1.0 eV.
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allowed by conservation of momentum. The limit is somewhat relaxed because the per-

pendicular component of momentum is not conserved.

At low temperatures, scattering falls off as the phonon occupation numbers

decrease, and the dominant phonons are determined by the maximum of the factor

Q'exp(-fiwQ/kT). At higher temperatures, scattering falls off when conservation of

momentum limits the allowed scattering events to phonons with relatively small wave

vectors, and the dominant phonons are those with wave vectors 2kr. Eventually, conser-

vation of momentum limits the allowed scattering events to phonons with energies much

less than kT, and equipartition becomes an accurate approximation. The crossover

between the region where the maximum is determined by the factor of Q'exp(-4wQ/iT)

and the region where it is determined by conservation of momentum occurs gradually.

Figure 3.7 is a graph of the power loss as a function of phonon energy at T = 30 K.

The power loss is dominated by phonons with energies fiwQ Z kT, and the error in

using equipartition is about 30%. Equipartition does not become an accurate approxima-

tion until 2fiukf « kT; for an electron density of 5X10"1 cm- 2 it is accurate to 10% or

ebetter when T > 75 K. This is considerably different from what we find in bulk sem-

iconductors, which are not normally as degenerate as two dimensional electron gases, and S

for which equipartition is therefore accurate at lower temperatures.

Although equipartition does not become an accurate approximation until the tem-

perature is relatively large, the power loss shows an approximately linear temperature

dependence at much lower temperatures (above approximately 10 K for an electron con-

centration of 5X101 cm 2). This proportionality of the power loss to Te - T, is what we

expect when equipartition is accurate, but the proportionality constant calculated with

,i%
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Fig. 3.7 The net power loss as a function of phonon energy at a lattice temperature of
30.0 K and an electron temperature of 30.05 K, temperatures for which 0
equipartition is generally assumed to be accurate. The dominant scattering is %,
by phonons with energies fiw Y kT, for which equipartition will produce a
30% error. Calculated for a two-dimensional electron gas density of
5X10 11 cm - 3 using a variational wave function. For this electron density
equipartition does not become accurate to 10% until the temperature exceeds
75 K. •
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the assumption of equipartition will be wrong. Thus the experimental observation of a

power loss (or mobility) proportional to temperature does not necessarily indicate that

equipartition is a valid approximation.

At relatively low electron concentrations, the approximations may fail even at

extremely low lattice temperatures. A recent study has reported measured power loss

rates of electrons in a AlxGalxAs/GaAs superlattice at temperatures ranging from

100 mK to 385 mK. ° The electron concentration was 1.7X10 1 cm -2. It was assumed

that deformation potential scattering was negligible and that the analytic approxima-

tions were applicable, which would lead to a power loss rate with a T5 dependence. How-

ever, to fit the experimental data to this model it was necessary to use five adjustable

parameters. For the range of data in this study the more exact numerical solution shows

that we would expect this model to give a temperature dependence between T3'8 and
T4.4, depending on the lattice temperature and the value used for the deformation poten-

tial. We emphasize that this temperature dependence has no direct physical meaning,

but is merely the result of fitting a model to the data. With a different range of data the

Qresults would be different. Note that the energy loss to deformation potential scattering

would be important if the larger values of the deformation potential were used. The

failure of the analytic approximations partially explains the discrepancy between the

energy relaxation rate determined in this experiment and the rate which was expected

from the analytic theory.

- w m. b ,W~ WF I~'
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4. EXPERIMENTAL TECHNIQUES AND CONSIDERATIONS

4.1. Measuring the Power Loss and the Electron Temperature

In the preceding chapter we derived the equations that relate <dc/dt> to Z, Te,

T1, cr, and the wave function O(z) of the electron. In this chapter we discuss the experi-

mental measurements with which we will compare the theory.

Experimentally, it is convenient to measure the relationship between <dE/dt> and

Te for fixed values of T1, er, and the electron wave function. We then calculate the

expected power loss and adjust the deformation potential constant Z to give the best

agreement between the theory and the experimental data. Bur Yr

The average power loss is easily measured. In the steady state, the total power lost

by the conduction electrons to the lattice is exactly balanced by the input power from

the electric field. The input power is simply the Joule heating, given by I2R, where I is

the input current and R is the resistance. We infer the average power loss per electron

by dividing the input power by the measured electron concentration and sample area.

The electron temperature is more difficult to measure.

A number of techniques have been developed to measure the electron temperature, 5

some more accurate than others. What is required is a measurable parameter which is a *55*:5_*

function of the electron temperature. There must be some method of calibrating its

dependence on the electron temperature, and it must be independent of any other param-

eters which are varied, either during the calibration or during the measurement of the

relationship between T. and <dc/dt>.

_. . . . . . . . . .,-- -%.
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One common technique used to measure the electron temperature depends on the

variation of the mobility35 with temperature. This method has the advantage of simpli-

city. First the temperature dependence of the mobility is calibrated by measuring the

low field mobility at various lattice temperatures. The input power used during the cali-

bration must be small enough that the electron temperature can be assumed to be equal

to the lattice temperature. The lattice temperature is then fixed, and the input power S

increased. At large input powers the electron temperature is raised above the lattice

temperature, and the electron temperature is inferred by comparing the mobility at large

input powers with the calibration curve.

Although this method offers the advantage of simplicity, it is of questionable accu-

racy. The problem arises because of the difficulty in separating the Te dependence of the )NSO
mobility from the T, dependence. The mobility may be directly affected by the lattice

temperature as well as the electron temperature because of the dependence of phonon

scattering on the lattice temperature. Thus the calibration curve will in most cases

reflect the effects of both T, and Te, in which case it cannot be used to determine Te. -

A similar method infers Te from the temperature dependence of the sample resis-

N
p tance, but includes an additional uncertainty due to the T, dependence of the carrier con-

centration. This method has been used in previously reported measurements of the

power loss in an AlxGalxAs/GaAs superlattice. ° As discussed in Chapter 3, the meam .

ured power loss did not have the functional form predicted by a precise numerical calcu-

lation of the theoretical power loss, and the measured power loss was two orders of mag-

nitude larger than expected. It was suggested60 that this anomalous power loss can be

explained if the electron distribution function deviates from the Fermi-Dirac function
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used in the theoretical analysis. Another possibility is that the measurement of the elec-

tron temperature was inaccurate. Because the power loss depends on the temperature

raised to a large power, a small error in Te leads to a large error in the calculated power

loss. An alternative method of measuring Te is necessary. N

4.2. The Shubnikov-de Haas Oscillations

In this work we use the strong temperature dependence of the Shubnikov-de Haas
(SdH) oscillations, which are oscillations in the resistance of a sample that occur when an

applied magnetic field is ramped up or down.' The amplitude of the SdH oscillations is

strongly dependent on the electron temperature, and thus provides a sensitive thermome-

ter.

The SdH oscillations occur because of the effect of a magnetic field on the density of ,

states available to the electrons. In a two-dimensional system with no applied magnetic

field, the electrons have two degrees of freedom and the density of states is a constant,

D(c) = m*/rfi. When a magnetic field is applied perpendicular to the plane of the -

two-dimensional system the electrons lose both degrees of freedom. They must follow

circular orbits around the magnetic field lines. The Hamiltonian for this system was first

solved by Landau,62 and these orbits are called Landau levels. The energies of the Lan-

dau levels are given by En = (n + Y2)iw,, where n is a quantum number and w, is the
%%-

cyclotron frequency, w, = eB/m*. The allowed energies are now at discrete points %

separated by w , and the density of states is no longer a constant. The idealized density

of states for a two-dimensional system in a magnetic field consists of a series of delta 'I

functions at the energies of the Landau levels, as shown in Fig. 4.1a). In actual systems

the electrons are scattered by impurities, phonons, and other imperfections, and this

I4~*.- le -. *
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Idealized Density of States
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Energy (meV)

Actual Density of States
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0.0 5.0 10.0 15.0 20.0 %

Energy (meV) S

Fig. 4.1 a) The density of states of a two-dimensional electron gas in a magnetic field
as a function of energy without the effects of scattering. b) The density of V..
states with the effects of scattering included. Calcuiated for a Dingle Lein-
perature of 17 K and a magnetic field of 37 kG, the approximate conditions
of our experiment.
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scattering of the electrons results in broadening of the delta functions, as shown in Fig.

4.1b). The broadening may be regarded somewhat imprecisely as arising from the

Heisenberg uncertainty principle, ,Er t, where AE is a measure of the broadening and

r is a scattering time.

This change in the density of states can have a dramatic effect on the average
IL

scattering rate and hence on the resistance. The scattering rate for a given electron is S

proportional to the density of final states available to the electron, and the total resis-

tance depends on the average of the scattering rate over all occupied states. In a degen-

erate system the Pauli exclusion principle prevents electrons with energies many kTe

below the Fermi energy from scattering, and the resistance is determined by the scatter-

ing of electrons near the Fermi energy.
S

If a magnetic field applied perpendicular to a degenerate two-dimensional electron

gas is ramped up or down, then the energies of the Landau levels change, and the peaks

in the density of states move through the Fermi energy. The change in the density of S

states at the Fermi energy changes the overall scattering rate, and the resistance of the 4

sample oscillates as successive Landau levels move through the Fermi energy. Figure 4.2

shows an example of the SdH oscillations in one of our samples.

There are a number of conditions which must be met if the SdH oscillations are to

be observed. If the broadening of the Landau levels due to scattering exceeds the separa-
S

tion between levels, then there will not be any significant energy dependence of the den- ,,.

sity of states. From the Heisenberg uncertainty principle we see that the broadening of

the Landau levels will be less than the separation between levels when War > 1 or S

equivalently when pB > 1, where we use the standard expressions to relate W, to p. "p..

li
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Physically, this means that the average electron makes at least one orbit before scatter-

ing. It is apparent that relatively large magnetic fields are necessary to observe the SdH

effect. The curve shown in Fig. 4.2 was made using a sample with a mobility

p 2 20000 cm 2 V - 1 S- 1, for which the effect should start at a magnetic field of approxi-

mately 5 kG. It can be seen that multiple periods of a convenient amplitude appear only

at considerably larger magnetic fields.

The condition pB > 1 assures that the density of states varies with energy. It is

also necessary that the averaging of the scattering rate over energies near the Fermi

energy include significant contributions from only a small range of the density of states,

or the variation will be averaged out. This condition is met when kTe < iwc,, which lim-

its the significant contributions to a single period of the oscillations in the density of

states. For typical magnetic fields the SdH effect is observed only at temperatures below

approximately 15 K. ,0

Finally, it is necessary that the sample be degenerate if the Landau levels are to

move through the Fermi energy. If we are to see oscillations then we require that

er Z fiw, at the magnetic field for which yB > 1. Thus the sample must be strongly

degenerate. In some samples it is not possible to satisfy uB > 1 and Er Z fiw, simultane- :.

ously, and the SdH oscillations are not observed. This is why this method of measuring

the deformation potential constant cannot be applied to bulk GaAs.

The theory of the SdH oscillations depends on quantum solutions of the equations

of motion and on the details of the scattering events that broaden the Landau levels, and

is therefore quite complicated. With some approximations appropriate to the conditions

of our experiment, the theory predicts that the change in resistance is given by



CkT,/iw2
AR c RC exp(-CkTD/hWC) cos( -2 r 4-) (4.1)

sinh(OkT,/fiwc) IiWC

where R0 is the resistance in the absence of a magnetic field, C is a constant, and TD is a

measure of the Landau level broadening called the Dingle temperature. 6' Note that the

amplitude of the oscillations is exponentially damped by the Landau level broadening,

and that the amplitude increases with increasing magnetic field. There are a number of
S

additional predictions of the theory.

The resistance oscillates as successive Landau levels pass through the Fermi level,

and the period of the oscillations is determined by the Fermi energy. From Eq. (4.1) we

can see that the period is given by

1 ie 1 _ e 1 (4.2

where (1/B) is the change in the inverse magnetic field between peaks in the resistance,

n is the sheet carrier concentration, and the remaining symbols have their usual mean-

ings. This equation may also be derived using simple semiclassical arguments which

depend only on the general form of the density of states in a magnetic field, and not on

the details of the scattering or the Landau level broadening. Because of its generality, it

has proven quite accurate, and it is commonly used to determine the carrier concentra-

tion in AlxGal_,As/GaAs systems at low temperatures. We use the SdH oscillations to

measure the carrier concentration, which we must know in order to infer the power loss .-..
":

,

per electron from the total input power. S

The theory also predicts that there is a strong electron temperature dependence of

the amplitude of the SdH oscillations, and this is our primary interest. The amplitude of

the oscillations depends on the variation in the average scattering rate, and the averaging

* . . P~%~V. jr,%V or
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of the scattering rate depends on kT, through the electron distribution function. If kTe

is large, then the averaging smooths out the variation in the density of states, and the

oscillations will be of small amplitude. Conversely, if kTe is small, then the oscillations

will have large amplitudes. Figure 4.3 shows the SdH oscillations in one of our samples

at a temperature of 2.7 K, and Fig. 4.4 shows the SdH oscillations in the same sample at

a temperature of 8.86 K. Note the large difference in the amplitude of the oscillations.

Because the temperature has a strong effect on the amplitude of the oscillations the

amplitude is a quite sensitive measure of the electron temperature.

In principle, Eq. (4.1) can be used to exactly predict the temperature dependence of

the amplitude of the the oscillations. In practice, the amplitude depends on too many

unknown parameters for the theory to be accurate enough for our purpose, and we must

calibrate the temperature dependence experimentally. This is done by measuring the

amplitude of the oscillations at a sequence of lattice temperatures using an input power

small enough that the electron temperature is the same as the lattice temperature. The

calibration will be accurate as long as the amplitude does not depend directly on T1 .

The amplitude will depend on T, only if the Landau level broadening depends on

T1 , and this broadening is determined by the scattering mechanisms. In high mobility

(over approximately 2X10 5 cm2 V- 1 s -1 ) modulation doped samples, lattice scattering is a

significant part of the total scattering, and the variation in the density of states will then

depend on the lattice temperature. In order to avoid this problem we have used rela-

tively low mobility samples (P20 000 cm 2 V- 1 s - ') in which impurity scattering is dom-

inant. Impurity scattering depends on the electron energy (and therefore on the electron

temperature) but not on the lattice temperature. Hence the density of states may show

4 ~ ."%* \%~ ~ V.~ '
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Fig. 4.3 Detail of the calibration of the amplitude of the Shubnikov-de Haas oscilla-
tions. The lattice temperature was 2.70 K. The electron concentration, as
determined from the period of the oscillations, was 4.7X10" cm - 2
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Fig. 4.4 The Shubnikov-de Haas oscillations in the same sample as in Fig. 4.3 at a
lattice temperature of' 8.86 K. Note the decreased amplitude of' the oscilla-
tions in comparison with those shown in Fig. 41.3. Note ak6,j that the nonos-
cillatory component of the magnetoresistance has changed.
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some temperature dependence, but it will depend only on the electron temperature, and

the calibration will be accurate.

This method of measuring T, depends on the changes in the scattering rate that

occur as the density of states changes. However, we compare our experimental data to

calculations of the power loss in which we have assumed that the density of states is con-

stant. In order to minimize the discrepancy between the conditions of the experiment •

and the theory we measure the amplitude of the SdH oscillations at a magnetic field for

which the amplitude of the oscillations is small (less than 15% of the zero field resis-

tance.) Because the resistance has deviated only slightly from the zero field value we can

be sure that the power loss has deviated only slightly also.

4.3. Other Contributions to the Magnetoresistance

In addition to the SdH oscillations, there are a number of other components to the

magnetoresistance. One of them depends on the geometry of the sample. 3 The geometri-

cal contribution is maximized in short, fat samples (the Corbino geometry) and minim-

ized in long, narrow samples. Under the conditions of our experiment the Corbino

geometry gives a geometrical magnetoresistance AR/R 0  s p2B , which dominates all

other components. Our initial experiments were done with devices that had a 1:1

length-to-width ratio and a moderate contribution from the geometrical effect. Later

experiments, from which the data in this thesis was taken, used devices with a 12 :1

ratio, as shown in the inset of Fig. 4.1. This ratio is large enough to essentially eliminate

the geometrical contribution to the magnetoresistance. The source-drain spacing of these k.-%

devices was 1250 pm, which is large enough to achieve small electric fields with con-

, .--
D.''T % -,'w ' w ,' ' ' ". 'i, ' "5' . .'. ..'-' ,'\' .'-.'.:'- '-% : ''J..' ' '--'-' 
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veniently measured source-drain voltages. Small electric fields are necessary during the

calibration phase to eliminate any significant heating of the electrons.

There are other components of the magnetoresistance which cannot be eliminated as

the geometrical component can. The localization correction depends on random fluctua- -;

tions in the potential that an electron sees, and leads to a negative magnetoresistance 6.

The electron-electron interaction between diffusively moving electrons can lead to either

a positive or a negative magnetoresistance. 6 . The interaction magnetoresistance has not

been studied extensively, and is not well understood. We expect the magnetoresistance

in each case to depend on Te, but this has not been conclusively demonstrated experi-

mentally.

4.4. The Sample Structure

The basic structure used in our experiment is a modulation doped single hetero-

structure. A diagram of +'ue structure which was used for most of the data we present is

shown in Fig. 4.5. In principle it is possible to calculate the doping levels and layer

thicknesses necessary to produce a sample with the desired properties. In practice, there

is too much uncertainty in the ionization energy of donors in the AlxGa-xAs and in the

calibration of the doping levels reached during the crystal growth process for the calcu-

lated parameters to provide anything other than general guidelines, and it is necessary to

adjust the parameters empirically.

The criterion for choosing the parameters is that they should provide a r%

two-dimensional electron gas in the GaAs with no parallel conduction through the

AlXGaxAs. It is necessary that the nominally undoped GaAs layer in which the

,5' l
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Fig. 4.5 The sample structure used in our experiments. Slight variations on this
structure were also tried, as discussed in the text.
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two-dimensional electron gas is to form be slightly P type. At the temperatures of our

experiment the effective density of states in the conduction band is of the order of

1015 cm- 3. If the bulk material is even slightly N type then it will be degenerate, and

there will be no band bending to confine the electrons at the interface.

Samples in which the GaAs is N type do not provide strong confinement of the elec-

trons at the interface, and the electrons are effectively three-dimensional. Although these

samples may be degenerate, the Fermi level is much closer to the conduction band then it

would be if the electrons were concentrated near the interface. The mobility is much

lower because of the decrease in screening which accompanies the lowering of the Fermi

level and because of the increased impurity scattering. As a result it is not possible to

satisfy uB > 1 and ef Z fwc at the same time, and the SdH effect is not observed. How-

ever, the resistivity remains low, indicating that a considerable number of carriers are

present. These samples were not suitable for our measurements.

In the samples which we use for our measurements of the deformation potential

constant we have verified that the conductivity is through a two-dimensional electron

gas by observing the disappearance of the SdH oscillations when the sample is tilted so .

that the magnetic field is parallel to the heterointerface. When the sample is oriented in

this way there are no SdH oscillations because the confinement of the two-dimensional

electrons prevents them from describing Landau orbits, and there is hence no variation in

the density of states.

A second potential problem occurs if the doping level in the AlxGai..xAs is too large,

which prevents it from fully depleting. The parallel conduction path through the

AlGaI..xAs prevents an accurate measurement of the input power to the two dimen-



sional electron gas, and would lead to errors in our measurement of the deformation

potential constant. The onset of parallel conduction has been studied extensively. It has

been noted that parallel conduction contributes a large positive nonoscillatory component

to the magnetoresistance.6 Figure 4.6 shows an example of the magnetoresistance in a

sample with parallel conduction through the Al.Ga._xAs. We did not use samples which

exhibited this large nonoscillatory magnetoresistance for our measurement of the defor-

mation potentiai constant.

4.5. Experimental Equipment

Because of the high magnetic fields necessary to observe the SdH oscillatiors we use

a superconducting magnet. The magnet, made by Intermagnetics General Corporation

(IGC), provides a maximum field of up to 130 kG in a bore of 3.8 cm, and may be 0

ramped to full strength in about 15 minutes. The magnetic field strength is measured

using a calibrated probe provided by IGC. The probe consists of a coil of copper wire

with a magnetic field-dependent resistance, and has been calibrated by IGC to better

than 1%. The signal from the probe is linearized and is used to drive one axis of an XY

plotter on which we record the SdH oscillations.

To calibrate the temperature dependence of the oscillations we must be able to vary

the lattice temperature. The superconducting magnet has been designed to accept the

Janis Super Varitemp insert to allow variable temperature measurements. This insert

- provides a sample chamber which is insulated from the main magnet chamber, and a 4e

small leak valve to admit liquid helium from the magnet chamber into the sample

chamber. The temperature is maintained at 4.2 K by filling the sample chamber with

liquid He. Temperatures below 4.2 K are obtained by using a roughing pump to draw a p,.P

44
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*Fig. 4.6 The Sliubnikov-de Ilaas oscillations in a sample with parallel conduction
through the Al.Gai-,As. The concentration in this sample is 9.7XI1' cm-2

cniderably higher than in the previous figures. This apeue hce
AlXGal-xAs layer which increased thle electron concentration, but was too
thick to completely deplete, resulting in parallel conduction. Despite the low
electric field there is a large positive nonoscillatorY comifl~ent of the magne-
toresistance. The lattice temperature was .1.2 1KL The double valleys that ap-
pear at high magnetic fields are the result of' spin splitting of thle l1:andau lev-
els.
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partial vacuum on the sample chamber. A Lake Shore Cryogenics 329 vacuum regulator

connects the roughing pump to the sample chamber and maintains a constant pressure.

The regulator is easily adjusted and stable enough to maintain the temperature constant

to within a few mK. The lowest temperature that we can achieve with this system is

approximately 1.5 K, although at temperatures below 2.17 K (the X point of 4He) the

temperature is somewhat unstable. At temperatures below 4.2 K the sample is in con-

stant contact with liquid He, which provides good temperature stability and a large ther-

mal mass to absorb any input power.

The Super Varitemp is also designed to provide temperatures above 4.2 K. In this

mode the leak valve is opened only enough to slowly admit liquid He to the sample

chamber. Power is applied to a resistive heater at the bottom of the sample chamber,

and the liquid He is vaporized as it is admitted. The He vapor escapes out a vent and

cools the sample as it passes over it. This does not provide as high a degree of tempera-

ture stability as is available with the sample in contact with liquid He, but with care the

temperature drift can be reduced to less than 0.05 K over the time necessary to complete

the magnetoresistance measurement, which is adequate for our experiment.,.N

The lattice temperature of the sample is measured using a Lake Shore Cryogenics S

carbon-glass resistance thermometer which is attached directly to the sample holder. A

carbon-glass thermometer is used because it is relatively insensitive to the magnetic field,

showing only a few percent change in resistance as the magnetic field is increased to full

strength. The more commonly used GaAs or Si temperature sensing diodes would show

a few hundred percent change under similar conditions, and are therefore unsuitable.
1%
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The sample resistance is measured by injecting a current and measuring the result-

ing voltage. Some studies have found that at very high electric fields it is necessary to

make pulsed measurements in order to avoid heating of the crystal lattice (hot phonon

effects.) Using the known heat capacities and thermal diffusivity of GaAs, we can calcu-

late that the maximum input power used in our experiment (approximately 3 mW cm- 2)

can produce a temperature rise of much less than 1 mK, and we conclude that pulsed

experiments are therefore not necessary at the electric field strengths of our experiment.

We use a Keithly 225 constant current source to make the dc measurements. The

sample resistance is approximately 40 kQ, and the maximum field we apply is 10 V cm - 1 ..

The sample resistance is much larger than either the resistance of the leads or the resis-

tance of the contacts, and it is not necessary to make a four-wire measurement of the

resistance.

The voltage induced across the sample is not large enough to drive the XY plotter

directly and must be amplified first. We use a PAR 113 differential amplifier for this.

The high-frequency rolloff is set at 10 Hz to reduce the noise, and the low-frequency

rolloff is set at dc. The system is calibrated by substituting precision resistors in place of

the sample and adjusting the amplifier gain and offset as necessary. For very low -

induced voltages it is necessary to account for the thermal EMFs that may be generated

in the wires that connect the amplifier (at 300 K) to the sample (at 4.2 K.) We can

reduce these EMFs by using identical wires for the source and drain connections so that

the EMF in the wires will cancel out. In practice there remains an EMF of around 1 mV, *.JM"

apparently due to inhomogeneities in the wires.

V.
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4.6. Calibrating the Te Dependence of the SdH Oscillations

The first step in measuring the electron temperature is to calibrate the temperature

dependence of the amplitude of the SdH oscillations. As we have previously discussed,

this is done by measuring the amplitude at a sequence of lattice temperatures while using

a low enough input power that we may accurately approximate Te = T1. After experi-

mentally determining the dependence of Te on the input power we have calculated the I

expected temperature increase for the input power used during the calibration and found

it to be less than 1 mK, which confirms the accuracy of the approximation that Te = T1.

The most difficult part of the calibration is the measurement of the amplitude of the ,

oscillations.

The measurement of the amplitude of the SdH oscillations is complicated by the 0

nonoscillatory magnetoresistance that is present in all samples. This nonoscillatory corn-

ponent can be seen clearly in Figs. 4.2, 4.3, and 4.4. The measurement of the amplitude

of the oscillations must either include this component or account for it. We have meas-

ured the amplitude of the SdH oscillations in two different ways.

One approach is to estimate the nonoscillatory component of the magnetoresistance

and to subtract it out of the measured amplitude. This approach has the advantage

that it does not directly include the nonoscillatory component, which is not as well

understood as the SdH oscillations are. It has the disadvantage of the uncertainty in the

estimate of the nonoscillatory component. The other approach is to measure the total

magnetoresistance, including both the SdH oscillations and the nonoscillatory component

of the magnetoresistance. This approach has the advantage that it is simple and does

not require an ad hoc estimate of the nonoscillatory component. Furthermore, since the

%0
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nonoscillatory component is often a small part of the total magnetoresistance, and since

we observe experimentally that the nonoscillatory component depends at least partially

on the electron temperature, this approach introduces at most a small error. Because of

the importance of this measurement to our experiment we have tried both approaches.

Theoretically, the most justifiable simple estimate of the nonoscillatory magne-

toresistance is quadratic in the magnetic eld.64'66 We first attempted to include the

nonoscillatory component by using a computer to do a least-squares fit of the magne-

toresistance to a theory which included both the SdH oscillations and a quadratic nonos-

cillatory component. It was found that this did not produce consistent results, probably

because of the large number of adjustable parameters necessary. For our data analysis

we therefore adopted the much simpler assumption that the nonoscillatory component

was linear in the magnetic field. This is certainly not accurate, but it may be accurate ,,

enough for the limited region of the magnetic field that we are interested iii, and most

importantly, it allows for a more consistent estimate of the nonoscillatory component. -S
The amplitude of the oscillation is then measured from the baseline which is our estimate

of the nonoscillatory component. This method leads to considerable scatter in the data

points, apparently because the nonlinearities in the magnetoresistance prevent us from

accurately accounting for the nonoscillatory component. Consequently, for most of our

-' data analysis we have instead measured the amplitude of the oscillations including the

nonoscillatory component of the magnetoresistance.

In this case we measure the amplitude of the peak at 37 kG using the valley at 32

kG as our reference point. This measure therefore includes the SdH amplitude at 32 kG,

's s s s .pj



the SdH amplitude at 37 kG, and the change in the nonoscillatory component between

these two fields. This has the advantage of eliminating the uncertainty in our estimates

of the nonoscillatory component, and eliminating the scatter in the data points. Figure

4.7 shows a calibration curve made using this method.

This measurement is accurate only if the nonoscillatory component of the magne-

toresistance depends on the electron temperature, or if it is a small enough contribution S

as to be negligible. Our results verify the accuracy of this measurement. Figure 4.8

shows two magnetoresistance curves. One is a calibration curve, made with 200 nA of

excitation current at a temperature of 7.38 K. The second curve was made at a lattice .

temperature of 3.40 K and an excitation current of 9.75 jA. From the calibration curve

we see that the electrons are heated to an approximate temperature of 7.40 K. In Fig.

4.8 the two curves are offset slightly so as to illustrate the differences, which are minimal.

The only significant difference is the deviation of the curves at the minimum of resistance

which occurs at 48 kG. This deviation is easily understood. The calibration curve is for

a constant electron temperature, Te = 7.38 K. The other curve was made at a constant

current. Because the sample resistance varied, the input power varied, and the electron

temperature is not constant. The reduced resistance in the valley at 48 kG reduced the

input power, and therefore lowered the electron temperature, leading to a larger ampli-

tude oscillation. The deviation of the electron temperature from a constant is substan-

tial only for large amplitude oscillations, which we do not use in our measurement of the

electron temperature.

Both calibration curves lead to essentially the same results, although there is consid-
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erably more scatter in the data points when we attempt to eliminate the contributions

from the nonoscillatory component of the magnetoresistance. All of the data which we

present in Chap. 5 was derived from calibration curves in which we included the nonos-

cillatory component.
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5. EXPERIMENTAL DATA AND ANALYSIS

5.1. Experimental Results

We have used the calibration curves discussed in Chap. 4 to measure the electron

temperature as a function of the input power at various lattice temperatures. 67 The

input power is converted to a power loss per electron by dividing by the electron concen-

tration and the area of the sample, as discussed previously. Figure 5.1 shows experimen-

tal data from one device and the theoretical calculation of the power loss. The deforma-

tion potential constant was adjusted to give the best agreement between the experimen-

tal data and the theoretical calculations, where the best fit is the one which minimizes

the sum of the square errors. Table 5.1 lists the values of the parameters used in our cal-

culations. The scatter in the data points taken at a lattice temperature of 5.5 K is due S

to the difficu!ty in stabilizing the temperature of the sample chamber at temperatures

above 4.2 K.

The theoretical power losses shown in Fig. 5.1 were calculated for a deformation

potential constant of 15.8 eV, which produced the best simultaneous fit of the data at all

lattice temperatures. This calculation included the self-consistent wave function and the
S

effects of screening. We have also determined the deformation potential constant which

best explains the data at each lattice temperature independently. This required deforma-

tion potential constants of 15.5 eV at 2.4 K, 15.9 eV at 4.2 K, and 16.0 eV at 5.5 K. The

differences in the value of the the deformation potential constant deduced at different lat-

tice temperatures reflect only a 6% change in the acoustic phonon scattering rate, and * -. '

are not significant.

- e!
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Table 5.1

Parameters Used in Calculations

Effective Mass m*m 0.067
Longitudinal Sound Velocity u1  5.24X10 5 cm s-16
Transverse Sound Velocity ut 2.99X10 5 cms1
Piezoelectric Constant eh14  1.45X10'
Static Dielectric Constant fr 12.9
Density p 5.36 g cm 3

...........
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Data taken from other devices required a change of up to 1 eV in the deformation S

potential constant necessary to fit the data. This corresponds to about a 10% change in

the power loss, and is within the expected experimental error. Devices which were cycled

repeatedly between room temperature and liquid He temperatures exhibited increased

power loss for a given electron temperature and required larger values of the deformation

potential constant to model the data. This cannot, of course, reflect any real change in

the deformation potential constant. It is probably the result of damage to the interface

caused by repeated cycling of materials with different thermal constants. The data

presented in Figs. 5.1 and 5.2 was taken from a device which was cooled to liquid He 9

temperatures only once. Fer eo t.

In addition to the data shown in Fig. 5.1 we have also measured the power loss at a

lattice temperature of 1.57 K. The data taken at 1.57 K is best fit using a deformation S

potential of 16.8 eV, reflecting an 11% increase in the power loss over that which would

be calculated using a deformation potential of 15.8 eV, as deduced from the higher tem-

perature data. We do not consider the data at this temperature to be as reliable as the -. ,

higher temperature data for a number of reasons. This is the minimum temperature

accessible to our system, and variations of the heat leaks into the system cause the tem- odo"' *'

perature to drift. This temperature is also below the X point of 4He (the point where the

He becomes a superfluid). Superfluid He is difficult to work with because of its tendency '"-

to creep along container walls. Because of this the temperature of the carbon-glass probe 0

may not accurately reflect the lattice temperature.

The theory that is fit to the data includes the power loss to both deformation k

potential scattering and the power loss to piezoelectric scattering. Piezoelectric scattering

lF. .
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has a different temperature dependence than does deformation potential scattering, and

its relative contribution to the total power loss depends on the temperature and the

value of the deformation potential constant. Piezoelectric scattering dominates at low

temperatures, and deformation potential scattering dominates at higher temperatures. -

The total contribution of piezoelectric scattering to the power loss in our experiment

ranged from a maximum of approximately 20% at a lattice temperature of 1.57 K to 5%

at a lattice temperature of 5.5 K, assuming a deformation potential constant of 15.8 eV.

It is necessary to accurately account for the power loss to piezoelectric scattering in order

to determine the value of the deformation potential constant. e

In our calculation of the power loss to piezoelectric scattering we have used the gen-

erally accepted value of the piezoelectric constant, which we did not treat as an adjust-

able parameter. The value of the deformation potential constant necessary to fit our

data did not depend on the amount of the relative contribution of piezoelectric scattering

to the total power loss, despite the variation in the contribution from piezoelectric

scattering, which indicates that our theory properly describes the ratio of the power

losses due to each mechanism. This is in disagreement with a previously reported meas-

urement of the power loss below 1 K which has been interpreted as indicating that the

power loss to piezoelectric scattering is more than two orders of magnitude larger than

expected based on theory.59 Our experiment cannot be interpreted as showing such an

anomalous power loss even if we attribute the entire measured power loss to piezoelectric %

scattering, and we conclude that we have seen no evidence of an anomalously large power

loss to piezoelectric scattering. We note also that our experimental data cannot be

explained by assuming a deformation potential constant of 7 eV and adjusting the value

) 'I,
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of the piezoelectric constant. This model requires a 50% variation in the piezoelectric

constant with lattice temperature, and it does not accurately model the temperature 4Y

dependence of the experimental data at any lattice temperature.

Figure 5.2 shows the data taken at a lattice temperature of 4.2 K along with the

theoretical power losses for deformation potential constants of 14.8, 15.8, and 16.8 eV. It %J*

is clear that our data is quite sensitive to the value of the deformation potential constant .

used, and that our results cannot be fit with deformation potential constants

significantly different from 15.8 eV. Note also that a significant change in the deforma-

tion potential constant would change the percentage of the total power loss which arose

from piezoelectric scattering. %.

We have also analyzed our data using a theory of the power loss which included -

variational wave function instead of the self-consistent one. The use of the variational

wave function reduces the total power loss by approximately 30% and requires a

corresponding increase in the value of Z2 . This is in agreement with the findings of pre- a

vious studies of scattering in heterojunctions 2 8' 31 and it illustrates the errors that can -

arise if the wave function used in the calculations does not match that of the sample.

As discussed in Chap. 3, it was not possible to distinguish experimentally between

the screened and unscreened theories at the temperatures available to us. The inclusion '-

of screening lowers the power loss at a given electron temperature, but at the temI era- - .

tures of our experiment it does not change the shape of the <dE/dt> versus T, curve,

and hence our data ma be fit by either theory. At the electron densities available in -

Al _G.\. (;aAs heterostrucutures it will be necessary to make measurements below .

I K to directly observe the effect of screening, and this will require a helium dilution d-Z , ,

-A-' f.~dJ.~..P" * ~ ~ * --w- . .. ,,,%V 
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refrigerator. We find that a deformation potential constant of 11.3 eV provides the best

agreement between the experimental data and the theory which does not include screen-

ing. However, in the absence of experimental data to the contrary, we believe that the

theory of screening presented in Chap. 3 is a more accurate approximation than a totally

unscreened theory.

5.2. Comparison with Previous Measurements in Bulk GaAs .

The deformation potential constant necessary to fit our data represents a four-fold

increase in acoustic phonon scattering as compared with the scattering which results if

the deformation potential constant is taken to be 7 or 8 eV. As discussed in Chap. 2, we

believe that the extensive studies of high-purity GaAs have convincingly established an

upper limit of 11 eV for the deformation potential constant of bulk GaAs, considerably

less than what we have measured in the AlxGaj_xA.s/GaAs heterojunction. This suggests

that the model of scattering in heterojunctions must be drastically changed. .

The model we discussed in Chap. 3 allowed for power loss through acoustic phonon

scattering only. There may exist a scattering mechanism which is observed in hetero-

junctions, but which has not been observed in bulk material. Our measurement of the

power loss, unlike measurements of the temperature dependence of the mobility, indicates 7.-

clearly that such a mechanism, if it exists, is an inelastic scattering mechanism. This is

an important clue to possible mechanisms. It eliminates such possibilities as interface

roughness scattering, which is elastic.

A second clue comes from our ability to accurately model the power loss using an

increased deformation potential constant. This indicates that any additional power loss

mechanism must have a similar temperature dependence to that of deformation potential %

U IL% A
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scattering. The temperature dependence of the scattering mechanism comes from the Q

dependence of the scattering matrix element. If the matrix element for a scattering

mechanism has a different Q dependence, then it will not be able to explain our data.

This is why, for example, we could not explain our data by fixing the deformation poten-

tial at 7 eV and adjusting the piezoelectric constant.

Recent publications68'69 by Das Sarma et al. have suggested a possible scattering

mechanism. Das Sarma has calculated the polar optic phonon spectrum including the

effects of the interaction between quasiparticle excitations and the longitudinal optical

phonon. This interaction produces low energy phonon modes with small spectral weight.

At high temperatures these modes are dominated by the well-known 36 meV phonon

mode, and their effects cannot be measured experimentally. At lower temperatures the

36 meV phonon mode is not excited in significant numbers, and the low energy phonon

modes become important. Das Sarma has used this theory to resolve an important con-

troversy regarding the power loss of electrons in heterojunctions at temperatures above

approximately 30 K. .-

An extension of this theory to the temperatures of our experiment may explain the

anomalously large power loss we observe. This mechanism has not been observed previ-

ously in measurements of the mobility in bulk GaAs because it is dominated by impurity d'.ow

scattering at low temperatures. It would become evident in power loss measurements,

which are not affected by impurity scattering, but to our knowledge there have been no

measurements of the power loss at low temperatures in bulk GaAs. It is not possible to

measure the power loss in bulk GaAs using the method described in this dissertation ,v

W .
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because of the low mobility of electron in highly doped GaAs as low temperatures. This

low mobility prevents the observation of the SdH oscillations.

The anomalously large power loss may also be explained qualitatively if we assume

that inhomogeneities in the AlxGai_xAs - GaAs interface produce variations in the .

confining potential which channel current along narrow paths between the source and

drain contacts. This could adversely affect our calculation of the total number of elec-

trons in the sample, and hence our calculation of the power loss per electron. It would

also change the wave function of the electron and introduce a second overlap integral 0

which would change the magnitude of the scattering matrix element, but not its Q -

dependence. This explanation is therefore consistent with the observation that the tem-

perature dependence of any additional scattering mechanism must be the same as that of

deformation potential scattering. At higher temperatures this confinement potential

would be small compared to the thermal energy of the electrons, and the effects would

disappear. We note, however, that our observation of the SdH oscillations indicates that

the electron have enough freedom to describe Landau orbits with diameters of approxi-

mately 1 pim, and that this sets a lower limit on the width of any possible channels. .

Finally, as discussed in Chap. 3, a calculation of the scattering by acoustic phonons

is dependent on our assumptions regarding the phonon modes. A precise calculation of

the power loss may require consideration of the interface modes which result from either

the AlXGal.,As - GaAs interface or from the close proximity of the crystal surface.

Further experimental work to determine the importance of interface modes is necessary. ',

%
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5.3. Comparison with Previous Measurements in Heterojunctions

The value of the deformation potential constant necessary to fit our data is some-

what larger than that found in most other studies of scattering in modulation doped

AlxGal.xAs/GaAs heterostructures. Previously reported measurements have ranged from

11 eV to 14 eV. The larger values have been reported when the data was analyzed using QW,

a variational wave function to calculate the mobility. As we have seen, the variational S

wave function decreases the calculated scattering rate and hence requires a larger defor-

mation potential constant explain the data. Mendez has reanalyzed 28 data previously

reported by Mendez et al.27 He found that the deformation potential constant necessary

to fit the data was reduced from 13% eV to 12 eV when a self-consistent wave function

was used in place of the variational wave function. A similar reanalysis of the other stu-

dies of the temperature dependence of the mobility would likely reduce the deformation _

potential constant necessary to fit the data to the 11 to 12 eV range also.

In addition to the studies of the mobility there is one recently reported study which

is directly comparable to ours. Hirakawa et al. have measured the deformation potential

constant through the power loss,~ as we did, and they used a self-consistent wave func-

tion, as we did. They found that a deformation potential constant of 11 eV was neces-

sary to fit their data. The power loss that they measured for a given electron tempera- .

ture was one half of what we found. This is significantly different from our results, let

despite the similar structures and electron densities.

There are a number of differences between our study and previously reported stu-

dies, and these differences offer important clues as to possible causes for the differences in S

the measured deformation potential constant.

' < l i~i ii~l l Ii i /i/ .. . + 
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One important difference between our experiment and previously reported experi-

ments is the temperature range of the data which was analyized. The studies of the tem-

perature dependence of the mobility cover the temperature range from approximately

5 K to 40 K. The study by Hirakawa et al. of the power loss covered a temperature

range from 4.2 K to 16 K, while our study covered the temperature range from 1.6 K to

8.0 K. The temperature range of our data is wider than that of Hirakawa et al. (where

the range is measured as Tml,/Tmin) and the absolute temperatures are lower. The data

of Hirakawa et al. appears to show a larger power loss at low temperatures than can be

explained using their deformation potential constant of 11 eV, which is consistent with 9

our experimental data. We could not extend our measurements to the higher tempera-

tures of the study by Hirakawa et al. because we used samples with lower mobilities. As

discussed in Chap. 3, the Landau level broadening exponentially damps the SdH oscilla-

tions. Hence, although our low mobility samples offer the distinct advantage of Landau

level broadening which is independent of T1, they limit the maximum temperature at

which we can observe the SdH oscillations. The apparent increase in the power loss

which Hirakawa et al. observed at low temperatures and the large power loss which we

observe may indicate that there is an additional scattering mechanism which contributes -

to the power loss, and that it is more effective at the low temperatures of our experiment. P

A second major difference is the mobility of the samples used in these experiments.

Ours is the only study of samples with mobilities less than 100000 cm 2 V- 1 s- 1. There is 0

no direct mechanism whereby the mobility can affect our measurements since the mobil-

* ity reduction is caused by increased impurity scattering, which is elastic, and our meas-

urements depend on the power lost through inelastic scattering mechanisms. However,

% A



81

impurities might affect the power loss in some subtle way, for example, through a

trapping/detrapping mechanism. Such a mechanism would be expected to have a larger

effect in a low mobility sample.

The final major difference between our study and previously reported studies is the

technology used to grow the crystals. The samples we have used in our study were

grown by MOCVD, while all previously reported measurements have been made on sam- 6

ples grown by MBE. Most of the of the mechanisms which might lead to the apparent

enhancement of the power loss, such as current channeling or power loss through a

trapping/detrapping mechanism, would be expected to depend strongly on the growth

technology. Further experimental work is necessary to determine which of the possible

mechanisms is causing the observed anomalous power loss.
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0. SUMMARY

We have investigated acoustic deformation potential scattering in AlxGalixAs/GaAs

modulation doped heterojunctions. Because the wave function of the electron is confined

almost entirely to the GaAs we expect the measured deformation potential constant to be

that of bulk GaAs. However, the deformation potential constant of 11 to 14 eV which

has been inferred from previous measurements of the mobility in these heterojunctions is

considerably larger than the generally accepted value of 7 eV for bulk GaAs. The larger

values are suspect because the maximum mobilities observed in bulk GaAs at 77 K set an

upper limit of 11 eV on the deformation potential constant in bulk GaAs. Measurements ,

based on the mobility are affected by all scattering mechanisms, which complicates the

analysis of the data. We choose to investigate the power loss, which is affected only by

inelastic scattering mechanisms. 9

We presented a theory of the electronic power loss in the heterojunction. The

power loss must be computed numerically under most conditions; however, at low tem-

peratures it may be computed analytically. When the analytical calculation is accurate,

then the Q dependence of the scattering matrix element directly determines the tempera-

ture dependence of the power loss (or the mobility). Screening introduces a factor of Q2

into the matrix element, which suggests that the theory of screening can be directly

tested through its effect on the temperature dependence of the power loss. It was found

that the analytical calculation of the power loss is valid only at temperatures much lower •

than previously believed because of the failure of equipartition. '-

We have measured the relationship between the electron temperature and the power

loss experimentally, and we compared our experimental measurements with the theory.

l
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In general agreement with previous measurements in heterojunctions, we found that a

large value of the deformation potential constant (for our samples, approximately 16 eV)

would be necessary to fit the data using the theory. In contrast with previously reported

studies of acoustic deformation potential scattering in heterojunctions, we do not con-

clude that this indicates an error in previous measurements of Z in bulk GaAs. We sug-

gest two possible alternatives. There may exist an additional power loss mechanism,

perhaps through the low energy polar optic phonon modes which Das Sarma has

described or perhaps through an impurity trapping/detrapping mechanism. Our experi-

ment, unlike previous studies of the mobility, indicates clearly that if an additional

scattering mechanism is the cause, then it must be an inelastic mechanism. Alterna- "

tively, a more sophisticated theory of scattering at low temperatures in heterojunctions,

perhaps including the effects of the interface on the phonon modes, may be necessary.

% • .
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APPENDIX 1. THE POWER LOSS EQUATION

In this appendix we describe in detail the steps taken in deriving the power loss

equation (Eq. (3.17)) and the steps necessary for an analytic solution of it.

1.1. Derivation of the Power Loss Equation

We start from Eq. (3.16), which gives the average power loss per electron in terms

of the time rate of change of the phonon mode occupation numbers,

1 t (Al.) 1

We convert the summation over the phonon wave vector into an integral, lt

0o 2m i r cc x/2 %
3fdQ3fdOfdOQsin¢ = (1_ 2 fdQ3 2f d0Q 3 Q. (A1.2)o o o, o o

The 0 = 0 direction is arbitrary, and we integrate over 0 immediately. The coordinate

system is defined such that Q, the component of the phonon wave vector parallel to the

heterointerface, is given by Q Q3sin4, and q, the component of the phonon wave vec- % ,'

tor perpendicular to the heterointerface, is given by q = Q3 cosO. Throughout the deriva-

tion we use Q and q freely with the understanding that these definitions are implied. To

proceed further we need the expression for the time rate of change of the phonon occupa-

tion numbers, Eq. (3.12), which we reproduce here:

NQ - 2Z--rE S2 (Q) I (q) M'(Q) 6(k- 4iWQ-k+Q)at k•

(A1. 3)

X (NQl)f(fk+Q)[1-f(Ek)] - NQf((k)(1-f(Ek+Q)•

We convert the summation over the two-dimensional electron wave vector into an

integral over electron energy,

,5~'* .
V' V V' *' ~ 5~ ~ -v: %'%5 ~ ~ " : '.f' -: .~.* ' 5 .. - ' >,-

* 5 555 ~ - .*.q
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k 2fd (i..)2fdOf kdk =(_L)2 2mLfd 0fd Ek, A
(l2d 2r -Ir 21 fi2 0Al0

where 0 =0 is defined so that 0 is the angle between Q and k, the components of the

phonon and electron wave vectors parallel to the heterointerface. We rewrite the second

line of Eq. (A1.3) as

[exp(fiw/kT,)exp(-hw/kTe) - 1ij NQ f(Ek [1 -(k+Q)I, (Al1.5)

where the transformation depends on our use of a Planck function characterized by the

lattice temperature T, for NQ and a Fermi-Dirac function characterized by an elevated

electron temperature T, for f(e). We also rewrite the delta function for energy conserva-

tion,

b(fk~fWQ-fk+Q) = 6(fiw-cQ-2cos0\fJE), (A1.6)

where we always take the positive square root. Combining Eqs. (AIl) through (Al.6),

we find

-4m*

f4m JdQ3 Q3 (exp(fiw/kTiexp(-hiw/kTe) 1 ]NQ
at £(2 7r)3 o

X f d4O Q S2(Q) 12(q) M2(Q3) (A1.7)

00

Xfd Ekfd Of(fk) [1 - (k+Q)1 6 (fw-EQ-2cosa\ 7 V7 ).
0 0

We now define A

and

21/2

d(AE) - -2VJkaQ.1(Al.9)

We convert the integral over 0 to one over AE to get
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c = 2m* r_Lt ti3 s fdQ3Q-3 exp(tiw/kTi)exp(-fiw/kTe) - 1 NQ

I2  
--00

X f dO Q S2(Q) 12(q) M 2(Q)f dk (AI.1O)
0 0

A~imx[ 2 11/2

X f d(AE)(kEQ) - t  1 . f(Ek)[1 -f(Ek+Q)I6(thw-AE),

where

! AEMin c Q --2V"k, (Al. 11) N:0.

and

AEmax  Q + 2. (A1.12)

We evaluate the integral over AE using the properties of the delta function. The require-

ment that hw lie within the range between AEmin and AEmax is satisfied if the electron

has a minimum energy. The power loss is then

>f2 V fdQ3 Q3 [exp(fiw/kT,)exp(4w/kTe) - 1 ]NQ

X f dO S2(Q)1 2(q)M 2(Q 3) (Al.13)o0
00 -fWC) 1/2 (w1

X f d 'Ek 'Ek 1 - f(Ek)[1 - f(Ek +
Erdn 4 fkEQ

where the minimum electron energy is

an mn=(t w--Q) 2  (A1.14) ,..:
,min (A. 4

and where we have used the two-dimensional density of states to relate n to Er. Further

simplification of the power loss equation requires a number of approximations, which we

discuss in the next section. 6
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1.2. The Approximate Analytical Solution .0,

With certain approximations, it is possible to solve for the average power loss

analytically. Our starting point is Eq. (3.17), derived in App. 1.1, To solve this equation

analytically, we must make some approximations. As discussed in Chap. 3, the main

approximations are the replacement of the overlap integral I(q) by unity, the use of the

strong screening approximation, S(Q) = Q/P, and the approximation NQ = exp(-Jw/kT)

for the phonon occupation numbers. With these approximations we can reduce Eq.

(A1.14) to

<aE> = F(Te) - F(T), (A2.1)
t

where

F(T) - 2uV'm" 2 Qr/ 2 r

F(T) ~ ) fdQ3QWexp(-fiw/kT) f dOQ 2 M2( 12 (22

X f d~k(Ek)-'f(Ek)[1 - f(Ek ± lw)] 1~_(i Q,,,2 4 kQ3).

Some other minor approximations are necessary to the solution of this equation. The

integral over Ekc nan factor V... -,,,
( k0 ) 1 -- 21 (A2.3)

X f d~(Ek)-"(Ek)[ --*k. f..+

for small Q. This approximation will be accurate at any temperature for which the other . .. ,.
4.-Q.. .k

approximations are accurate. This integral also contains a factor Ek'. This factor varies

slowly in comparison with the rest of the integrand, and we take it to be constant at the

point where the integral peaks, Ek E . If we also replace the lower limit of the integral -

with -oo, an excellent approximation for a degenerate system, then the remaining

integral can be solved analytically, and has the value fiw. With these approximations, we

%

1611* 1. 01
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U now have

_ 2u 00 ~ ir/2
F(T -(P~2~

2  dQ3 Q' exp(-fiw/kT) f dO sin 2 OM 2(Q) (A2.4)
0 0

To proceed further we must choose a specific matrix element M(Q). The matrix element

for deformation potential scattering is

We substitut :kto E. (A2.4) and integrate over 0, and substitute from Eq. (3.10) for the

ujC2~fi5 00

F() 2j)2 *324 fdQ3 Q3 exp(-fi w/kT). (A2.6)

-, Finally, we defineep

fi UQ3  (A2.7)
kT'

and

fiudx =-dQ 3. (A2.8)FkT

With this substitution we find

2(T 6!E2Z2(kT)7  (A2.9)
,Ef2(27r)2(2mn )3 /2e4pfi2U 10

which concludes our derivation of the analytical equation for the power loss to screened

deformation potential scattering. The analytical solution for the power loss to piezoelec-

tric scattering may be obtained similarly.

1178 o ? C 114 1:* P..
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